References
- A. Othmani, S. Magdouli, P. Senthil Kumar, A. Kapoor,
P.V. Chellam, Ö. Gökkuş, Agricultural waste materials for
adsorptive removal of phenols, chromium(VI) and cadmium(II)
from wastewater: a review, Environ. Res., 204 (2022) 111916,
doi: 10.1016/j.envres.2021.111916.
- O. Abdelwahab, N.K. Amin, E.-S.Z. El-Ashtoukhy, The
investigation of phenol removal from aqueous solutions by
water hyacinth, Sep. Sci. Technol., 49 (2014) 1604–1612.
- S.J. Tshemese, W. Mhike, S.M. Tichapondwa, Adsorption
of phenol and chromium(VI) from aqueous solution using
exfoliated graphite: equilibrium, kinetics and thermodynamic
studies, Arabian J. Chem., 14 (2021) 103160, doi: 10.1016/j.arabjc.2021.103160.
- B.H. Hameed, A.A. Rahman, Removal of phenol from aqueous
solutions by adsorption onto activated carbon prepared from
biomass material, J. Hazard. Mater., 160 (2008) 576–581.
- G. Nirmala, T. Murugesan, K. Rambabu, K. Sathiyanarayanan,
P.L. Show, Adsorptive removal of phenol using banyan root
activated carbon, Chem. Eng. Commun., 208 (2021) 831–842.
- S.L. Gayatri, M. Ahmaruzzaman, Adsorption technique for the
removal of phenolic compounds from wastewater using lowcost
natural adsorbents, Assam Univ. J. Sci. Technol., 5 (2010)
156–166.
- D.N. Jadhav, A.K. Vanjara, Removal of phenol from wastewater
using sawdust, polymerized sawdust and sawdust carbon,
Indian J. Chem. Technol., 11 (2004) 35–41.
- M. Radwan, M.G. Alalm, H. Eletriby, Optimization and
modeling of electro-Fenton process for treatment of phenolic
wastewater using nickel and sacrificial stainless steel anodes,
J. Water Process Eng., 22 (2018) 155–162.
- M. Tyagi, N. Kumari, S. Jagadevan, A holistic Fenton oxidationbiodegradation
system for treatment of phenol from coke oven
wastewater: optimization, toxicity analysis and phylogenetic
analysis, J. Water Process Eng., 37 (2020) 101475, doi: 10.1016/j.
jwpe.2020.101475.
- F.Z. Yehia, Gh. Eshaq, A.M. Rabie, A.H. Mady, A.E. ElMetwally,
Phenol degradation by advanced Fenton process in combination
with ultrasonic irradiation, Egypt. J. Pet., 24 (2015) 13–18.
- L.Y. Jun, L.S. Yon, N.M. Mubarak, C.H. Bing, S. Pan,
M.K. Danquah, E.C. Abdullah, M. Khalid, An overview of
immobilized enzyme technologies for dye and phenolic
removal from wastewater, J. Environ. Chem. Eng., 7 (2019)
102961, doi: 10.1016/j.jece.2019.102961.
- M. Del Bubba, B. Anichini, Z. Bakari, M.C. Bruzzoniti,
R. Camisa, C. Caprini, L. Checchini, D. Fibbi, A. El Ghadraoui,
F. Liguori, S. Orlandini, Physicochemical properties and
sorption capacities of sawdust-based biochars and commercial
activated carbons towards ethoxylated alkylphenols and their
phenolic metabolites in effluent wastewater from a textile
district, Sci. Total Environ., 708 (2020) 135217, doi:10.1016/j.scitotenv.2019.135217.
- N. Singh, A. Kumari, C. Balomajumder, Modeling studies
on mono and binary component biosorption of phenol and
cyanide from aqueous solution onto activated carbon derived
from sawdust, Saudi J. Biol. Sci., 25 (2018) 1454–1467.
- S. Larous, A.-H. Meniai, The use of sawdust as by product
adsorbent of organic pollutant from wastewater: adsorption of
phenol, Energy Procedia, 18 (2012) 905–914.
- A. Farhadi, A. Ameri, S. Tamjidi, Application of agricultural
wastes as a low-cost adsorbent for removal of heavy metals
and dyes from wastewater: a review study, Phys. Chem. Res.,
9 (2021) 211–226.
- D. Yelatontsev, A. Mukhachev, Characterization of a new lowcost
sorbent based on walnut shell media, 3rd International
Scientific Conference “Science progress in European Countries:
New Concepts and Modern Solutions”, Hosted by the ORT
Publishing and The Center for Scientific Research “Solution”,
November 23, 2018 Stuttgart, German, 2018, p. 147.
- M. Sulyman, J. Namiesnik, A. Gierak, Low-cost adsorbents
derived from agricultural by-products/wastes for enhancing
contaminant uptakes from wastewater: a review, Pol. J. Environ.
Stud., 26 (2017) 479–510.
- S. Singh, K.L. Wasewar, S.K. Kansal, Chapter 10 – Low-Cost Adsorbents for Removal of Inorganic Impurities from
Wastewater, P. Devi, P. Singh, S.K. Kansal, Eds., Inorganic
Pollutants in Water, Elsevier, Amsterdam, Netherlands, 2020,
pp. 173–203.
- A. ElAziz A. Nayl, R.A. Elkhashab, T. El Malah, S.M. Yakout,
M.A. El-Khateeb, M.M.S. Ali, M.A. Hazim, Adsorption studies
on the removal of COD and BOD from treated sewage using
activated carbon prepared from date palm waste, Environ. Sci.
Pollut. Res., 24 (2017) 22284–22293.
- A.H.F. Tahir, A.H.M.J. Al-Obaidy, F.H. Mohammed, Biochar
from date palm waste, production, characteristics and use in
the treatment of pollutants: a review, IOP Conf. Ser.: Mater. Sci.
Eng., 737 (2020) 012171.
- W. Cong, L. Shi, Heterogeneity of industrial development and
evolution of cleaner production: bibliometric analysis based on
JCLP, J. Cleaner Prod., 212 (2019) 822–836.
- F.A. El-Gohary, M.I. Badawy, M.A. El-Khateeb, A.S. El-Kalliny,
Integrated treatment of olive mill wastewater (OMW) by the
combination of Fenton’s reaction and anaerobic treatment,
J. Hazard. Mater., 162 (2009) 1536–1541.
- APHA, Standard Methods for Examination of Water and
Wastewater, 23rd ed., American Public Health Association,
Washington D.C., USA, 2021.
- EEAA, Ministerial Decree 44/2000, For the Discharge of
Wastewater into the Sewerage System, The Egyptian Gazette,
Egypt, 2000.
- E.G. Garrido-Ramírez, J.F. Marco, N. Escalona, M.S. Ureta-Zañartu, Preparation and characterization of bimetallic Fe–Cu
allophane nanoclays and their activity in the phenol oxidation
by heterogeneous electro-Fenton reaction, Microporous
Mesoporous Mater., 225 (2016) 303–311.
- R.C. Martins, A.F. Rossi, R.M. Quinta-Ferreira, Fenton’s
oxidation process for phenolic wastewater remediation and
biodegradability enhancement, J. Hazard. Mater., 180 (2010)
716–721.
- W. Maamir, Y. Ouahabi, S. Poncin, H.-Z. Li, K. Bensadok, Effect
of Fenton pretreatment on anaerobic digestion of olive mill
wastewater and olive mill solid waste in mesophilic conditions,
Int. J. Green Energy, 14 (2017) 555–560.
- M.P. Ormad, R. Mosteo, C. Ibarz, J.L. Ovelleiro, Multivariate
approach to the photo-Fenton process applied to the
degradation of winery wastewaters, Appl. Catal., B, 66 (2006)
58–63.
- J. Kuntail, S. Pal, I. Sinha, Interfacial phenomena during Fenton
reaction on starch stabilized magnetite nanoparticles: molecular
dynamics and experimental investigations, J. Mol. Liq., 318
(2020) 114037, doi:10.1016/j.molliq.2020.114037.
- A. Tufail, W.E. Price, M. Mohseni, B.K. Pramanik, F.I. Hai,
A critical review of advanced oxidation processes for emerging
trace organic contaminant degradation: mechanisms, factors,
degradation products, and effluent toxicity, J. Water Process
Eng., 40 (2021) 101778, doi: 10.1016/j.jwpe.2020.101778.
- G. Crini, E. Lichtfouse, L.D. Wilson, N. Morin-Crini, Adsorption-
Oriented Processes Using Conventional and Non-Conventional
Adsorbents for Wastewater Treatment, G. Crini, E. Lichtfouse,
Eds., Green Adsorbents for Pollutant Removal: Fundamentals
and Design, Springer, Gewerbestrasse 11, 6330 Cham,
Switzerland, 2018, pp. 23–71.
- O. Sahu, D.G. Rao, N. Gabbiye, A. Engidayehu, F. Teshale,
Sorption of phenol from synthetic aqueous solution by
activated sawdust: optimizing parameters with response
surface methodology, Biochem. Biophys. Rep., 12 (2017) 46–53.
- L. Semerjian, Removal of heavy metals (Cu, Pb) from aqueous
solutions using pine (Pinus halepensis) sawdust: equilibrium,
kinetic, and thermodynamic studies, Environ. Technol.
Innovation, 12 (2018) 91–103.
- I.H. Dakhil, Removal of phenol from industrial wastewater
using sawdust, Int. J. Eng. Sci., 3 (2013) 25–31.