References

  1. A. Othmani, S. Magdouli, P. Senthil Kumar, A. Kapoor, P.V. Chellam, Ö. Gökkuş, Agricultural waste materials for adsorptive removal of phenols, chromium(VI) and cadmium(II) from wastewater: a review, Environ. Res., 204 (2022) 111916, doi: 10.1016/j.envres.2021.111916.
  2. O. Abdelwahab, N.K. Amin, E.-S.Z. El-Ashtoukhy, The investigation of phenol removal from aqueous solutions by water hyacinth, Sep. Sci. Technol., 49 (2014) 1604–1612.
  3. S.J. Tshemese, W. Mhike, S.M. Tichapondwa, Adsorption of phenol and chromium(VI) from aqueous solution using exfoliated graphite: equilibrium, kinetics and thermodynamic studies, Arabian J. Chem., 14 (2021) 103160, doi: 10.1016/j.arabjc.2021.103160.
  4. B.H. Hameed, A.A. Rahman, Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material, J. Hazard. Mater., 160 (2008) 576–581.
  5. G. Nirmala, T. Murugesan, K. Rambabu, K. Sathiyanarayanan, P.L. Show, Adsorptive removal of phenol using banyan root activated carbon, Chem. Eng. Commun., 208 (2021) 831–842.
  6. S.L. Gayatri, M. Ahmaruzzaman, Adsorption technique for the removal of phenolic compounds from wastewater using lowcost natural adsorbents, Assam Univ. J. Sci. Technol., 5 (2010) 156–166.
  7. D.N. Jadhav, A.K. Vanjara, Removal of phenol from wastewater using sawdust, polymerized sawdust and sawdust carbon, Indian J. Chem. Technol., 11 (2004) 35–41.
  8. M. Radwan, M.G. Alalm, H. Eletriby, Optimization and modeling of electro-Fenton process for treatment of phenolic wastewater using nickel and sacrificial stainless steel anodes, J. Water Process Eng., 22 (2018) 155–162.
  9. M. Tyagi, N. Kumari, S. Jagadevan, A holistic Fenton oxidationbiodegradation system for treatment of phenol from coke oven wastewater: optimization, toxicity analysis and phylogenetic analysis, J. Water Process Eng., 37 (2020) 101475, doi: 10.1016/j. jwpe.2020.101475.
  10. F.Z. Yehia, Gh. Eshaq, A.M. Rabie, A.H. Mady, A.E. ElMetwally, Phenol degradation by advanced Fenton process in combination with ultrasonic irradiation, Egypt. J. Pet., 24 (2015) 13–18.
  11. L.Y. Jun, L.S. Yon, N.M. Mubarak, C.H. Bing, S. Pan, M.K. Danquah, E.C. Abdullah, M. Khalid, An overview of immobilized enzyme technologies for dye and phenolic removal from wastewater, J. Environ. Chem. Eng., 7 (2019) 102961, doi: 10.1016/j.jece.2019.102961.
  12. M. Del Bubba, B. Anichini, Z. Bakari, M.C. Bruzzoniti, R. Camisa, C. Caprini, L. Checchini, D. Fibbi, A. El Ghadraoui, F. Liguori, S. Orlandini, Physicochemical properties and sorption capacities of sawdust-based biochars and commercial activated carbons towards ethoxylated alkylphenols and their phenolic metabolites in effluent wastewater from a textile district, Sci. Total Environ., 708 (2020) 135217, doi:10.1016/j.scitotenv.2019.135217.
  13. N. Singh, A. Kumari, C. Balomajumder, Modeling studies on mono and binary component biosorption of phenol and cyanide from aqueous solution onto activated carbon derived from sawdust, Saudi J. Biol. Sci., 25 (2018) 1454–1467.
  14. S. Larous, A.-H. Meniai, The use of sawdust as by product adsorbent of organic pollutant from wastewater: adsorption of phenol, Energy Procedia, 18 (2012) 905–914.
  15. A. Farhadi, A. Ameri, S. Tamjidi, Application of agricultural wastes as a low-cost adsorbent for removal of heavy metals and dyes from wastewater: a review study, Phys. Chem. Res., 9 (2021) 211–226.
  16. D. Yelatontsev, A. Mukhachev, Characterization of a new lowcost sorbent based on walnut shell media, 3rd International Scientific Conference “Science progress in European Countries: New Concepts and Modern Solutions”, Hosted by the ORT Publishing and The Center for Scientific Research “Solution”, November 23, 2018 Stuttgart, German, 2018, p. 147.
  17. M. Sulyman, J. Namiesnik, A. Gierak, Low-cost adsorbents derived from agricultural by-products/wastes for enhancing contaminant uptakes from wastewater: a review, Pol. J. Environ. Stud., 26 (2017) 479–510.
  18. S. Singh, K.L. Wasewar, S.K. Kansal, Chapter 10 – Low-Cost Adsorbents for Removal of Inorganic Impurities from Wastewater, P. Devi, P. Singh, S.K. Kansal, Eds., Inorganic Pollutants in Water, Elsevier, Amsterdam, Netherlands, 2020, pp. 173–203.
  19. A. ElAziz A. Nayl, R.A. Elkhashab, T. El Malah, S.M. Yakout, M.A. El-Khateeb, M.M.S. Ali, M.A. Hazim, Adsorption studies on the removal of COD and BOD from treated sewage using activated carbon prepared from date palm waste, Environ. Sci. Pollut. Res., 24 (2017) 22284–22293.
  20. A.H.F. Tahir, A.H.M.J. Al-Obaidy, F.H. Mohammed, Biochar from date palm waste, production, characteristics and use in the treatment of pollutants: a review, IOP Conf. Ser.: Mater. Sci. Eng., 737 (2020) 012171.
  21. W. Cong, L. Shi, Heterogeneity of industrial development and evolution of cleaner production: bibliometric analysis based on JCLP, J. Cleaner Prod., 212 (2019) 822–836.
  22. F.A. El-Gohary, M.I. Badawy, M.A. El-Khateeb, A.S. El-Kalliny, Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton’s reaction and anaerobic treatment, J. Hazard. Mater., 162 (2009) 1536–1541.
  23. APHA, Standard Methods for Examination of Water and Wastewater, 23rd ed., American Public Health Association, Washington D.C., USA, 2021.
  24. EEAA, Ministerial Decree 44/2000, For the Discharge of Wastewater into the Sewerage System, The Egyptian Gazette, Egypt, 2000.
  25. E.G. Garrido-Ramírez, J.F. Marco, N. Escalona, M.S. Ureta-Zañartu, Preparation and characterization of bimetallic Fe–Cu allophane nanoclays and their activity in the phenol oxidation by heterogeneous electro-Fenton reaction, Microporous Mesoporous Mater., 225 (2016) 303–311.
  26. R.C. Martins, A.F. Rossi, R.M. Quinta-Ferreira, Fenton’s oxidation process for phenolic wastewater remediation and biodegradability enhancement, J. Hazard. Mater., 180 (2010) 716–721.
  27. W. Maamir, Y. Ouahabi, S. Poncin, H.-Z. Li, K. Bensadok, Effect of Fenton pretreatment on anaerobic digestion of olive mill wastewater and olive mill solid waste in mesophilic conditions, Int. J. Green Energy, 14 (2017) 555–560.
  28. M.P. Ormad, R. Mosteo, C. Ibarz, J.L. Ovelleiro, Multivariate approach to the photo-Fenton process applied to the degradation of winery wastewaters, Appl. Catal., B, 66 (2006) 58–63.
  29. J. Kuntail, S. Pal, I. Sinha, Interfacial phenomena during Fenton reaction on starch stabilized magnetite nanoparticles: molecular dynamics and experimental investigations, J. Mol. Liq., 318 (2020) 114037, doi:10.1016/j.molliq.2020.114037.
  30. A. Tufail, W.E. Price, M. Mohseni, B.K. Pramanik, F.I. Hai, A critical review of advanced oxidation processes for emerging trace organic contaminant degradation: mechanisms, factors, degradation products, and effluent toxicity, J. Water Process Eng., 40 (2021) 101778, doi: 10.1016/j.jwpe.2020.101778.
  31. G. Crini, E. Lichtfouse, L.D. Wilson, N. Morin-Crini, Adsorption- Oriented Processes Using Conventional and Non-Conventional Adsorbents for Wastewater Treatment, G. Crini, E. Lichtfouse, Eds., Green Adsorbents for Pollutant Removal: Fundamentals and Design, Springer, Gewerbestrasse 11, 6330 Cham, Switzerland, 2018, pp. 23–71.
  32. O. Sahu, D.G. Rao, N. Gabbiye, A. Engidayehu, F. Teshale, Sorption of phenol from synthetic aqueous solution by activated sawdust: optimizing parameters with response surface methodology, Biochem. Biophys. Rep., 12 (2017) 46–53.
  33. L. Semerjian, Removal of heavy metals (Cu, Pb) from aqueous solutions using pine (Pinus halepensis) sawdust: equilibrium, kinetic, and thermodynamic studies, Environ. Technol. Innovation, 12 (2018) 91–103.
  34. I.H. Dakhil, Removal of phenol from industrial wastewater using sawdust, Int. J. Eng. Sci., 3 (2013) 25–31.