References
- M.O. Barbosa, N.F.F. Moreira, A.R. Ribeiro, M.F.R. Pereira,
A.M.T. Silva, Occurrence and removal of organic micropollutants:
an overview of the watch list of EU Decision 2015/495,
Water Res., 94 (2016) 257–279.
- K.O. K’oreje, F.J. Kandie, L. Vergeynst, M.A. Abira,
H. Van Langenhove, M. Okoth, K. Demeestere, Occurrence,
fate and removal of pharmaceuticals, personal care products
and pesticides in wastewater stabilization ponds and
receiving rivers in the Nzoia Basin, Kenya, Sci. Total Environ.,
637–638 (2018) 336–348.
- R. Tröger, P. Klöckner, L. Ahrens, K. Wiberg, Micropollutants
in drinking water from source to tap - method development
and application of a multiresidue screening method, Sci. Total
Environ., 627 (2018) 1404–1432.
- C.X. Huo, P. Hickey, EDC demonstration programme in the
UK – Anglian water’s approach, Environ. Technol., 28 (2007)
731–741.
- J.P. Laurenson, R.A. Bloom, S. Page, N. Sadrieh, Ethinyl
estradiol and other human pharmaceutical estrogens in the
aquatic environment: a review of recent risk assessment data,
AAPS J., 16 (2014) 299–310.
- V. Chander, B. Sharma, V. Negi, R.S. Aswal, P. Singh, R. Singh,
R. Dobhal, Pharmaceutical compounds in drinking water,
J. Xenobiot., 6 (2016) 5774, doi: 10.4081/xeno.2016.5774.
- Y. Feng, Z. Zhang, P. Gao, H. Su, Y. Yu, N. Ren, Adsorption
behavior of EE2 (17α-ethinylestradiol) onto the inactivated
sewage sludge: kinetics, thermodynamics and influence factors,
J. Hazard. Mater., 175 (2010) 970–976.
- K. Damkjaer, J.J. Weisser, S.C. Msigala, R. Mdegela, B. Styrishave,
Occurrence, removal and risk assessment of steroid hormones
in two wastewater stabilization pond systems in Morogoro,
Tanzania, Chemosphere, 212 (2018) 1142–1154.
- P. Schröder, B. Helmreich, B. Škrbić, M. Carballa, M. Papa,
C. Pastore, Z. Emre, A. Oehmen, A. Langenhoff,
M. Molinos,
J. Dvarioniene, C. Huber, K.P. Tsagarakis, E. Martinez-Lopez,
S. Meric Pagano, C. Vogelsang,
G. Mascolo, Status of hormones
and painkillers in wastewater effluents across several European
states–considerations for the EU watch list concerning
estradiols and diclofenac, Environ. Sci. Pollut. Res., 23 (2016)
12835–12866.
- K. Rehberger, E. Wernicke von Siebenthal, C. Bailey, P. Bregy,
M. Fasel, E.L. Herzog, S. Neumann, H. Schmidt-Posthaus,
H. Segner, Long-term exposure to low 17α-ethinylestradiol
(EE2) concentrations disrupts both the reproductive and the
immune system of juvenile rainbow trout, Oncorhynchus mykiss,
Environ. Int., 142 (2020) 105836, doi: 10.1016/j.envint.2020.
105836.
- M. Adeel, X. Song, Y. Wang, D. Francis, Y. Yang, Environmental
impact of estrogens on human, animal and plant life: a critical
review, Environ. Int., 99 (2017) 107–119.
- S. Lecomte, D. Habauzit, T.D. Charlier, F. Pakdel, Emerging
estrogenic pollutants in the aquatic environment and breast
cancer, Genes (Basel), 8 (2017) 229, doi: 10.3390/genes8090229.
- IARC, Combined Estrogen–Progestogen Contraceptives.
IARC Monographs on the Evaluation of Carcinogenic Risks
to Humans, International Agency for Research on Cancer,
150 cours Albert Thomas, 69372 Lyon Cedex 08, France,
2005 (2012) 100A:283–317.
- J. Kent, J.H. Tay, Treatment of 17α-ethinylestradiol,
4-nonylphenol, and carbamazepine in wastewater using an
aerobic granular sludge sequencing batch reactor, Sci. Total
Environ., 652 (2019) 1270–1278.
- L.L.S. Silva, J.C.S. Sales, J.C. Campos, D.M. Bila, F.V. Fonseca,
Advanced oxidative processes and membrane separation for
micropollutant removal from biotreated domestic wastewater,
Environ. Sci. Pollut. Res., 24 (2017) 6329–6338.
- V. Kumar, D. Avisar, L. Prasanna V, Y. Betzalel, H. Mamane,
Rapid visible-light degradation of EE2 and its estrogenicity in
hospital wastewater by crystalline promoted g-C3N4, J. Hazard.
Mater., 398 (2020) 122880, doi: 10.1016/j.jhazmat.2020.122880.
- X. Ma, C. Zhang, J. Deng, Y. Song, Q. Li, Y. Guo, C. Li,
Simultaneous degradation of estrone, 17β-estradiol and
17α-ethinyl estradiol in an aqueous UV/H2O2 system, Int. J.
Environ. Res. Public Health, 12 (2015) 12016–12029.
- A. Mohagheghian, R. Nabizadeh, A. Mesdghinia, N. Rastkari,
A.H. Mahvi, M. Alimohammadi, M. Yunesian,
R. Ahmadkhaniha,
S. Nazmara, Distribution of estrogenic steroids in municipal
wastewater treatment plants in Tehran, Iran, J. Environ. Health
Sci. Eng., 12 (2014) 97, doi: 10.1186/2052-336X-12-97.
- R.O. Pereira, C. Postigo, M.L. de Alda, L.A. Daniel, D. Barceló,
Removal of estrogens through water disinfection processes and
formation of by-products, Chemosphere, 82 (2011) 789–799.
- D. Bila, A.F. Montalvão, D. de A. Azevedo, M. Dezotti,
Estrogenic activity removal of 17β-estradiol by ozonation and
identification of by-products, Chemosphere, 69 (2007) 736–746.
- C. Postigo, S.D. Richardson, Transformation of pharmaceuticals
during oxidation/disinfection processes in drinking water
treatment, J. Hazard. Mater., 279 (2014) 461–475.
- K. Moriyama, H. Matsufuji, M. Chino, M. Takeda, Identification
and behavior of reaction products formed by chlorination of
ethynylestradiol, Chemosphere, 55 (2004) 839–847.
- S. Hemidouche, A. Assoumani, L. Favier, A.I. Simion,
C.G. Grigoras, D. Wolbert, L. Gavrila, Removal of Some
Endocrine Disruptors via Adsorption on Activated Carbon,
2017 E-Health and Bioengineering Conference (EHB), IEEE,
Sinaia, Romania, 2017, pp. 410–413.
- J. Hartmann, R. Beyer, S. Harm, Effective removal of estrogens
from drinking water and wastewater by adsorption technology,
Environ. Process., 1 (2014) 87–94.
- J. He, J. Guo, Q. Zhou, J. Yang, F. Fang, Y. Huang, Analysis of
17α-ethinylestradiol and bisphenol A adsorption on anthracite
surfaces by site energy distribution, Chemosphere, 216 (2019)
59–68.
- L. Wang, L. Liu, Z. Zhang, B. Zhao, J. Li, B. Dong, N. Liu,
17α-Ethinylestradiol removal from water by magnetic ion
exchange resin, Chin. J. Chem. Eng., 26 (2018) 864–869.
- J. Bedia, V. Muelas-Ramos, M. Peñas-Garzón, A. Gómez-Avilés, J.J. Rodríguez, C. Belver, A review on the synthesis
and characterization of metal–organic frameworks for
photocatalytic water purification, Catalysts, 9 (2019) 52,
doi: 10.3390/catal9010052.
- N.B. Singh, G. Nagpal, S. Agrawal, Rachna, Water purification
by using adsorbents: a review, Environ. Technol. Innovation,
11 (2018) 187–240.
- E.M. Dias, C. Petit, Towards the use of metal–organic
frameworks for water reuse: a review of the recent advances in
the field of organic pollutants removal and degradation and the
next steps in the field, J. Mater. Chem. A, 3 (2015) 22484–22506.
- C. Petit, Present and future of MOF research in the field of
adsorption and molecular separation, Curr. Opin. Chem. Eng.,
20 (2018) 132–142.
- R. Abazari, A.R. Mahjoub, J. Shariati, Synthesis of a
nanostructured pillar MOF with high adsorption capacity
towards antibiotics pollutants from aqueous solution, J. Hazard.
Mater., 366 (2019) 439–451.
- M.R. Azhar, H.R. Abid, H. Sun, V. Periasamy, M.O. Tadé,
S. Wang, One-pot synthesis of binary metal–organic frameworks
(HKUST-1 and UiO-66) for enhanced adsorptive removal of
water contaminants, J. Colloid Interface Sci., 490 (2017) 685–694.
- R. Liang, L. Shen, F. Jing, N. Qin, L. Wu, Preparation of MIL-53(Fe)-reduced graphene oxide nanocomposites by a simple
self-assembly strategy for increasing interfacial contact: efficient
visible-light photocatalysts, ACS Appl. Mater. Interfaces,
7 (2015) 9507–9515.
- Q. Sun, M. Liu, K. Li, Y. Zuo, Y. Han, J. Wang, C. Song,
G. Zhang, X. Guo, Facile synthesis of Fe-containing
metal–organic frameworks as highly efficient catalysts for degradation
of phenol at neutral pH and ambient temperature, Cryst. Eng.
Comm, 17 (2015) 7160–7168.
- X. Liu, Y. Zhou, J. Zhang, L. Tang, L. Luo, G. Zeng, Iron
containing metal–organic frameworks: structure, synthesis, and
applications in environmental remediation, ACS Appl. Mater.
Interfaces, 9 (2017) 20255–20275.
- N.M. Mahmoodi, J. Abdi, Nanoporous metal–organic
framework (MOF-199): synthesis, characterization and
photocatalytic degradation of Basic Blue 41, Microchem. J.,
144 (2019) 436–442.
- M.A. Ghasemzadeh, B. Mirhosseini-Eshkevari, M.H. Abdollahi-
Basir, MIL-53(Fe) metal–organic frameworks (MOFs) as an
efficient and reusable catalyst for the one-pot four-component
synthesis
of pyrano[2,3-c]-pyrazoles, Appl. Organomet. Chem.,
33 (2019) e4679, doi: 10.1002/aoc.4679.
- P. Gautam, T. Purvis, Method development and validation of
stability indicating RP-HPLC method for the determination
of female hormones in hormone concentrates creams, Pharm.
Anal. Chem., 3 (2017) 1000120, doi: 10.4172/2471-2698.1000120.
- B.M. Peake, R. Braund, A.Y.C. Tong, L.A. Tremblay, Detection
and Presence of Pharmaceuticals in the Environment, In: The
Life-Cycle of Pharmaceuticals in the Environment, Woodhead
Publishing which is an imprint of Elsevier, 80 High Street,
Sawston, Cambridge, CB22 3HJ, UK, 2016, pp. 77–107.
- C.M. Navarathna, N.B. Dewage, A.G. Karunanayake, E.L. Farmer,
F. Perez, E.B. Hassan, T.E. Mlsna, C.U. Pittman Jr., Rhodamine
B adsorptive removal and photocatalytic degradation on
MIL-53-Fe MOF/magnetic magnetite/biochar composites,
J. Inorg. Organomet. Polym. Mater., 30 (2020) 214–229.
- Z. Zhang, X. Li, B. Liu, Q. Zhao, G. Chen, Hexagonal
microspindle of NH2-MIL-101(Fe) metal–organic frameworks
with visible-light-induced photocatalytic activity for the
degradation of toluene, RSC Adv., 6 (2016) 4289–4295.
- Q. Xie, Y. Li, Z. Lv, H. Zhou, X. Yang, J. Chen, H. Guo, Effective
adsorption and removal of phosphate from aqueous solutions
and eutrophic water by Fe-based MOFs of MIL-101, Sci. Rep.,
7 (2017) 3316, doi:10.1038/s41598-017-03526-x.
- U.B. Simsek, C. Geçgel, M. Turabik, Different Iron Based
Metal–Organic Frameworks Synthesis, Characterization and
Using for Amoxicillin Removal from Aqueous Solutions, 2nd
International Mediterranean Science and Engineering Congress
(IMSEC 2017), Adana, 2017, pp. 1–7.
- E. Yılmaz, E. Sert, F.S. Atalay, Synthesis, characterization
of a metal–organic framework: MIL-53(Fe) and adsorption
mechanisms of methyl red onto MIL-53(Fe), J. Taiwan Inst.
Chem. Eng., 65 (2016) 323–330.
- S.G. Herawan, M.S. Hadi, Md. R. Ayob, A. Putra, Characterization
of activated carbons from oil-palm shell by CO2 activation with
no holding carbonization temperature, Sci. World J., 2013 (2013)
624865, doi:10.1155/2013/624865.
- L. Jiang, Y. Liu, G. Zeng, S. Liu, X. Hu, L. Zhou, X. Tan,
N. Liu, M. Li, J. Wen, Adsorption of estrogen contaminants
(17β-estradiol and 17α-ethynylestradiol) by graphene
nanosheets from water: effects of graphene characteristics and
solution chemistry, Chem. Eng. J., 339 (2018) 296–302.
- B.M. Jun, H.S. Hwang, J. Heo, J. Han, M. Jang, J. Sohn, C.M. Park,
Y. Yoon, Removal of selected
endocrine-disrupting compounds
using Al-based metal–organic framework: performance and
mechanism of competitive adsorption, J. Ind. Eng. Chem.,
79 (2019) 345–352.
- Z. Luo, H. Li, Y. Yang, H. Lin, Z. Yang, Adsorption of
17α-ethinylestradiol from aqueous solution onto a reduced
graphene oxide-magnetic composite, J. Taiwan Inst. Chem.
Eng., 80 (2017) 797–804.
- L. Mita, M. Forte, A. Rossi, C. Adamo, S. Rossi, D.G. Mita,
M. Guida, M. Portaccio, T. Godievargova, I. Yavour,
M. Samir,
M. Eldin, Removal of 17-α ethinylestradiol from water systems
by adsorption on polyacrylonitrile beads: isotherm and
kinetics studies, Ann. Environ. Sci. Toxicol., 2 (2017) 48–58.
- S. Rahman, A. Arami-Niya, X. Yang, G. Xiao, G. (Kevin) Li,
E.F. May, Temperature dependence of adsorption hysteresis in
flexible metal–organic frameworks, Commun. Chem., 3 (2020)
186,
doi:10.1038/s42004-020-00429-3.
- L.A. Al-Khateeb, A.Y. Obaid, N.A. Asiri, M. Abdel Salam,
Adsorption behavior of estrogenic compounds on carbon
nanotubes from aqueous solutions: kinetic and thermodynamic
studies, J. Ind. Eng. Chem., 20 (2014) 916–924.
- X. Wang, Z. Liu, Z. Ying, M. Huo, W. Yang, Adsorption of trace
estrogens in ultrapure and wastewater treatment plant effluent
by magnetic graphene oxide, Int. J. Environ. Res. Public Health,
15 (2018) 1454, doi:10.3390/ijerph15071454.