References

  1. M.O. Barbosa, N.F.F. Moreira, A.R. Ribeiro, M.F.R. Pereira, A.M.T. Silva, Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495, Water Res., 94 (2016) 257–279.
  2. K.O. K’oreje, F.J. Kandie, L. Vergeynst, M.A. Abira, H. Van Langenhove, M. Okoth, K. Demeestere, Occurrence, fate and removal of pharmaceuticals, personal care products and pesticides in wastewater stabilization ponds and receiving rivers in the Nzoia Basin, Kenya, Sci. Total Environ., 637–638 (2018) 336–348.
  3. R. Tröger, P. Klöckner, L. Ahrens, K. Wiberg, Micropollutants in drinking water from source to tap - method development and application of a multiresidue screening method, Sci. Total Environ., 627 (2018) 1404–1432.
  4. C.X. Huo, P. Hickey, EDC demonstration programme in the UK – Anglian water’s approach, Environ. Technol., 28 (2007) 731–741.
  5. J.P. Laurenson, R.A. Bloom, S. Page, N. Sadrieh, Ethinyl estradiol and other human pharmaceutical estrogens in the aquatic environment: a review of recent risk assessment data, AAPS J., 16 (2014) 299–310.
  6. V. Chander, B. Sharma, V. Negi, R.S. Aswal, P. Singh, R. Singh, R. Dobhal, Pharmaceutical compounds in drinking water, J. Xenobiot., 6 (2016) 5774, doi: 10.4081/xeno.2016.5774.
  7. Y. Feng, Z. Zhang, P. Gao, H. Su, Y. Yu, N. Ren, Adsorption behavior of EE2 (17α-ethinylestradiol) onto the inactivated sewage sludge: kinetics, thermodynamics and influence factors, J. Hazard. Mater., 175 (2010) 970–976.
  8. K. Damkjaer, J.J. Weisser, S.C. Msigala, R. Mdegela, B. Styrishave, Occurrence, removal and risk assessment of steroid hormones in two wastewater stabilization pond systems in Morogoro, Tanzania, Chemosphere, 212 (2018) 1142–1154.
  9. P. Schröder, B. Helmreich, B. Škrbić, M. Carballa, M. Papa, C. Pastore, Z. Emre, A. Oehmen, A. Langenhoff,
    M. Molinos, J. Dvarioniene, C. Huber, K.P. Tsagarakis, E. Martinez-Lopez, S. Meric Pagano, C. Vogelsang,
    G. Mascolo, Status of hormones and painkillers in wastewater effluents across several European states–considerations for the EU watch list concerning estradiols and diclofenac, Environ. Sci. Pollut. Res., 23 (2016) 12835–12866.
  10. K. Rehberger, E. Wernicke von Siebenthal, C. Bailey, P. Bregy, M. Fasel, E.L. Herzog, S. Neumann, H. Schmidt-Posthaus, H. Segner, Long-term exposure to low 17α-ethinylestradiol (EE2) concentrations disrupts both the reproductive and the immune system of juvenile rainbow trout, Oncorhynchus mykiss, Environ. Int., 142 (2020) 105836, doi: 10.1016/j.envint.2020. 105836.
  11. M. Adeel, X. Song, Y. Wang, D. Francis, Y. Yang, Environmental impact of estrogens on human, animal and plant life: a critical review, Environ. Int., 99 (2017) 107–119.
  12. S. Lecomte, D. Habauzit, T.D. Charlier, F. Pakdel, Emerging estrogenic pollutants in the aquatic environment and breast cancer, Genes (Basel), 8 (2017) 229, doi: 10.3390/genes8090229.
  13. IARC, Combined Estrogen–Progestogen Contraceptives. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France, 2005 (2012) 100A:283–317.
  14. J. Kent, J.H. Tay, Treatment of 17α-ethinylestradiol, 4-nonylphenol, and carbamazepine in wastewater using an aerobic granular sludge sequencing batch reactor, Sci. Total Environ., 652 (2019) 1270–1278.
  15. L.L.S. Silva, J.C.S. Sales, J.C. Campos, D.M. Bila, F.V. Fonseca, Advanced oxidative processes and membrane separation for micropollutant removal from biotreated domestic wastewater, Environ. Sci. Pollut. Res., 24 (2017) 6329–6338.
  16. V. Kumar, D. Avisar, L. Prasanna V, Y. Betzalel, H. Mamane, Rapid visible-light degradation of EE2 and its estrogenicity in hospital wastewater by crystalline promoted g-C3N4, J. Hazard. Mater., 398 (2020) 122880, doi: 10.1016/j.jhazmat.2020.122880.
  17. X. Ma, C. Zhang, J. Deng, Y. Song, Q. Li, Y. Guo, C. Li, Simultaneous degradation of estrone, 17β-estradiol and 17α-ethinyl estradiol in an aqueous UV/H2O2 system, Int. J. Environ. Res. Public Health, 12 (2015) 12016–12029.
  18. A. Mohagheghian, R. Nabizadeh, A. Mesdghinia, N. Rastkari, A.H. Mahvi, M. Alimohammadi, M. Yunesian,
    R. Ahmadkhaniha, S. Nazmara, Distribution of estrogenic steroids in municipal wastewater treatment plants in Tehran, Iran, J. Environ. Health Sci. Eng., 12 (2014) 97, doi: 10.1186/2052-336X-12-97.
  19. R.O. Pereira, C. Postigo, M.L. de Alda, L.A. Daniel, D. Barceló, Removal of estrogens through water disinfection processes and formation of by-products, Chemosphere, 82 (2011) 789–799.
  20. D. Bila, A.F. Montalvão, D. de A. Azevedo, M. Dezotti, Estrogenic activity removal of 17β-estradiol by ozonation and identification of by-products, Chemosphere, 69 (2007) 736–746.
  21. C. Postigo, S.D. Richardson, Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment, J. Hazard. Mater., 279 (2014) 461–475.
  22. K. Moriyama, H. Matsufuji, M. Chino, M. Takeda, Identification and behavior of reaction products formed by chlorination of ethynylestradiol, Chemosphere, 55 (2004) 839–847.
  23. S. Hemidouche, A. Assoumani, L. Favier, A.I. Simion, C.G. Grigoras, D. Wolbert, L. Gavrila, Removal of Some Endocrine Disruptors via Adsorption on Activated Carbon, 2017 E-Health and Bioengineering Conference (EHB), IEEE, Sinaia, Romania, 2017, pp. 410–413.
  24. J. Hartmann, R. Beyer, S. Harm, Effective removal of estrogens from drinking water and wastewater by adsorption technology, Environ. Process., 1 (2014) 87–94.
  25. J. He, J. Guo, Q. Zhou, J. Yang, F. Fang, Y. Huang, Analysis of 17α-ethinylestradiol and bisphenol A adsorption on anthracite surfaces by site energy distribution, Chemosphere, 216 (2019) 59–68.
  26. L. Wang, L. Liu, Z. Zhang, B. Zhao, J. Li, B. Dong, N. Liu, 17α-Ethinylestradiol removal from water by magnetic ion exchange resin, Chin. J. Chem. Eng., 26 (2018) 864–869.
  27. J. Bedia, V. Muelas-Ramos, M. Peñas-Garzón, A. Gómez-Avilés, J.J. Rodríguez, C. Belver, A review on the synthesis and characterization of metal–organic frameworks for photocatalytic water purification, Catalysts, 9 (2019) 52, doi: 10.3390/catal9010052.
  28. N.B. Singh, G. Nagpal, S. Agrawal, Rachna, Water purification by using adsorbents: a review, Environ. Technol. Innovation, 11 (2018) 187–240.
  29. E.M. Dias, C. Petit, Towards the use of metal–organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field, J. Mater. Chem. A, 3 (2015) 22484–22506.
  30. C. Petit, Present and future of MOF research in the field of adsorption and molecular separation, Curr. Opin. Chem. Eng., 20 (2018) 132–142.
  31. R. Abazari, A.R. Mahjoub, J. Shariati, Synthesis of a nanostructured pillar MOF with high adsorption capacity towards antibiotics pollutants from aqueous solution, J. Hazard. Mater., 366 (2019) 439–451.
  32. M.R. Azhar, H.R. Abid, H. Sun, V. Periasamy, M.O. Tadé, S. Wang, One-pot synthesis of binary metal–organic frameworks (HKUST-1 and UiO-66) for enhanced adsorptive removal of water contaminants, J. Colloid Interface Sci., 490 (2017) 685–694.
  33. R. Liang, L. Shen, F. Jing, N. Qin, L. Wu, Preparation of MIL-53(Fe)-reduced graphene oxide nanocomposites by a simple self-assembly strategy for increasing interfacial contact: efficient visible-light photocatalysts, ACS Appl. Mater. Interfaces, 7 (2015) 9507–9515.
  34. Q. Sun, M. Liu, K. Li, Y. Zuo, Y. Han, J. Wang, C. Song, G. Zhang, X. Guo, Facile synthesis of Fe-containing
    metal–organic frameworks as highly efficient catalysts for degradation of phenol at neutral pH and ambient temperature, Cryst. Eng. Comm, 17 (2015) 7160–7168.
  35. X. Liu, Y. Zhou, J. Zhang, L. Tang, L. Luo, G. Zeng, Iron containing metal–organic frameworks: structure, synthesis, and applications in environmental remediation, ACS Appl. Mater. Interfaces, 9 (2017) 20255–20275.
  36. N.M. Mahmoodi, J. Abdi, Nanoporous metal–organic framework (MOF-199): synthesis, characterization and photocatalytic degradation of Basic Blue 41, Microchem. J., 144 (2019) 436–442.
  37. M.A. Ghasemzadeh, B. Mirhosseini-Eshkevari, M.H. Abdollahi- Basir, MIL-53(Fe) metal–organic frameworks (MOFs) as an efficient and reusable catalyst for the one-pot four-component synthesis
    of pyrano[2,3-c]-pyrazoles, Appl. Organomet. Chem., 33 (2019) e4679, doi: 10.1002/aoc.4679.
  38. P. Gautam, T. Purvis, Method development and validation of stability indicating RP-HPLC method for the determination of female hormones in hormone concentrates creams, Pharm. Anal. Chem., 3 (2017) 1000120, doi: 10.4172/2471-2698.1000120.
  39. B.M. Peake, R. Braund, A.Y.C. Tong, L.A. Tremblay, Detection and Presence of Pharmaceuticals in the Environment, In: The Life-Cycle of Pharmaceuticals in the Environment, Woodhead Publishing which is an imprint of Elsevier, 80 High Street, Sawston, Cambridge, CB22 3HJ, UK, 2016, pp. 77–107.
  40. C.M. Navarathna, N.B. Dewage, A.G. Karunanayake, E.L. Farmer, F. Perez, E.B. Hassan, T.E. Mlsna, C.U. Pittman Jr., Rhodamine B adsorptive removal and photocatalytic degradation on MIL-53-Fe MOF/magnetic magnetite/biochar composites, J. Inorg. Organomet. Polym. Mater., 30 (2020) 214–229.
  41. Z. Zhang, X. Li, B. Liu, Q. Zhao, G. Chen, Hexagonal microspindle of NH2-MIL-101(Fe) metal–organic frameworks with visible-light-induced photocatalytic activity for the degradation of toluene, RSC Adv., 6 (2016) 4289–4295.
  42. Q. Xie, Y. Li, Z. Lv, H. Zhou, X. Yang, J. Chen, H. Guo, Effective adsorption and removal of phosphate from aqueous solutions and eutrophic water by Fe-based MOFs of MIL-101, Sci. Rep., 7 (2017) 3316, doi:10.1038/s41598-017-03526-x.
  43. U.B. Simsek, C. Geçgel, M. Turabik, Different Iron Based Metal–Organic Frameworks Synthesis, Characterization and Using for Amoxicillin Removal from Aqueous Solutions, 2nd International Mediterranean Science and Engineering Congress (IMSEC 2017), Adana, 2017, pp. 1–7.
  44. E. Yılmaz, E. Sert, F.S. Atalay, Synthesis, characterization of a metal–organic framework: MIL-53(Fe) and adsorption mechanisms of methyl red onto MIL-53(Fe), J. Taiwan Inst. Chem. Eng., 65 (2016) 323–330.
  45. S.G. Herawan, M.S. Hadi, Md. R. Ayob, A. Putra, Characterization of activated carbons from oil-palm shell by CO2 activation with no holding carbonization temperature, Sci. World J., 2013 (2013) 624865, doi:10.1155/2013/624865.
  46. L. Jiang, Y. Liu, G. Zeng, S. Liu, X. Hu, L. Zhou, X. Tan, N. Liu, M. Li, J. Wen, Adsorption of estrogen contaminants (17β-estradiol and 17α-ethynylestradiol) by graphene nanosheets from water: effects of graphene characteristics and solution chemistry, Chem. Eng. J., 339 (2018) 296–302.
  47. B.M. Jun, H.S. Hwang, J. Heo, J. Han, M. Jang, J. Sohn, C.M. Park, Y. Yoon, Removal of selected
    endocrine-disrupting compounds using Al-based metal–organic framework: performance and mechanism of competitive adsorption, J. Ind. Eng. Chem., 79 (2019) 345–352.
  48. Z. Luo, H. Li, Y. Yang, H. Lin, Z. Yang, Adsorption of 17α-ethinylestradiol from aqueous solution onto a reduced graphene oxide-magnetic composite, J. Taiwan Inst. Chem. Eng., 80 (2017) 797–804.
  49. L. Mita, M. Forte, A. Rossi, C. Adamo, S. Rossi, D.G. Mita, M. Guida, M. Portaccio, T. Godievargova, I. Yavour,
    M. Samir, M. Eldin, Removal of 17-α ethinylestradiol from water systems by adsorption on polyacrylonitrile beads: isotherm and kinetics studies, Ann. Environ. Sci. Toxicol., 2 (2017) 48–58.
  50. S. Rahman, A. Arami-Niya, X. Yang, G. Xiao, G. (Kevin) Li, E.F. May, Temperature dependence of adsorption hysteresis in flexible metal–organic frameworks, Commun. Chem., 3 (2020) 186,
    doi:10.1038/s42004-020-00429-3.
  51. L.A. Al-Khateeb, A.Y. Obaid, N.A. Asiri, M. Abdel Salam, Adsorption behavior of estrogenic compounds on carbon nanotubes from aqueous solutions: kinetic and thermodynamic studies, J. Ind. Eng. Chem., 20 (2014) 916–924.
  52. X. Wang, Z. Liu, Z. Ying, M. Huo, W. Yang, Adsorption of trace estrogens in ultrapure and wastewater treatment plant effluent by magnetic graphene oxide, Int. J. Environ. Res. Public Health, 15 (2018) 1454, doi:10.3390/ijerph15071454.