References

  1. L. Wang, Z. Bian, Photocatalytic degradation of paracetamol on Pd-BiVO4 under visible light irradiation, Chemosphere, 239 (2020) 124815, doi: 10.1016/j.chemosphere.2019.124815.
  2. C. Akay, U. Tezel, Biotransformation of Acetaminophen by intact cells and crude enzymes of bacteria: a comparative study and modelling, Sci. Total Environ., 703 (2019) 134990, doi:10.1016/j.scitotenv.2019.134990.
  3. I. Bavasso, C. Poggi, E. Petrucci, Enhanced degradation of paracetamol by combining UV with electrogenerated hydrogen peroxide and ozone, J. Water Process Eng., 34 (2020) 101102, doi: 10.1016/j.jwpe.2019.101102.
  4. Q. Zhang, S. Cheng, H. Xia, L. Zhang, J. Zhou, C. Li, J. Shu, X. Jiang, Paracetamol degradation performance and mechanisms using microwave-assisted heat-activated persulfate in solutions, Water Air Soil Pollut., 230 (2019) 271, doi: 10.1007/s11270-019-4286-7.
  5. R. Katal, M.H.D.A. Farahani, H. Jiangyong, Degradation of acetaminophen in a photocatalytic (batch and continuous system) and photoelectrocatalytic process by application of faceted-TiO2, Sep. Purif. Technol., 230 (2020) 115859, doi: 10.1016/j.seppur.2019.115859.
  6. M. Gros, S. Rodríguez-Mozaz, D. Barceló, Fast and comprehensive multiresidue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters
    by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry, J. Chromatogr., A, 1248 (2012) 104–121.
  7. F.C. Wu, R.L. Tseng, R.S. Juang, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chem. Eng. J., 153 (2009) 1–8.
  8. S. Fekadu, E. Alemayehu, R. Dewil, B. Van der Bruggen, Pharmaceuticals in freshwater aquatic environments:
    a comparison of the African and European challenge, Sci. Total Environ., 654 (2019) 324–337.
  9. M. Neamţu, M. Bobu, A. Kettrup, I. Siminiceanu, Ozone photolysis of paracetamol in aqueous solution,
    J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 48 (2013) 1264–1271.
  10. R. Andreozzi, V. Caprio, R. Marotta, D. Vogna, Paracetamol oxidation from aqueous solutions by means of ozonation and H2O2/UV system, Water Res., 37 (2003) 993–1004.
  11. A.Z. Yavas, Y. Mizukoshi, Y. Maeda, N.H. Ince, Supporting of pristine TiO2 with noble metals to enhance the oxidation and mineralization of paracetamol by sonolysis and sonophotolysis, Appl. Catal., B, 172–173 (2015) 7–17.
  12. M.D. De Luna, M.L. Veciana, C.C. Su, M.C. Lu, Acetaminophen degradation by electro-Fenton and
    photoelectro-Fenton using a double cathode electrochemical cell, J. Hazard. Mater., 30 (2012) 217–218.
  13. S. Basha, D. Keane, K. Nolan, M. Oelgemöller, J. Lawler, J.M. Tobin, A. Morrissey, UV-induced photocatalytic degradation of aqueous acetaminophen: the role of adsorption and reaction kinetics, Environ. Sci. Pollut. Res., 22 (2015) 2219–2230.
  14. M.A.L. Zavala, C.R.J. Lara, Degradation of paracetamol and its oxidation products in surface water by electrochemical oxidation, Environ. Eng. Sci., 35 (2018) 1248–1254.
  15. R. Karaman, M. Khamis, J. Abbadi, A. Amro, M. Qurie, I. Ayyad, F. Ayyash, O. Hamarsheh, R. Yaqmour, S. Nir,
    S.A. Bufo, L. Scrano, S. Lerman, S. Gur-Reznik, C.G. Dosoretz, Paracetamol biodegradation by activated sludge and photocatalysis and its removal by a micelle-clay complex, activated charcoal and reverse osmosis membranes, Environ. Technol., 37 (2016) 2414–2427.
  16. M.A. Khana, B.H. Hameed, J. Lawler, M. Kumar, B.H. Jeond, Developments in activated functionalized carbons and their applications in water decontamination: a review, Desal. Water Treat., 54 (2015) 422–449.
  17. M. Ghaedi, A. Ansari, M.H. Habibi, A.R. Asghari, Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: kinetics and isotherm study, J. Ind. Eng. Chem., 20 (2013) 17–28.
  18. T. Xie, K.R. Reddy, C. Wang, E. Yargicoglu, K. Spokas, Characteristics and applications of biochar for environmental remediation: a review, Crit. Rev. Env. Sci. Technol., 45 (2015) 939–969.
  19. J.D. Toth, Z. Dou, Use and Impact of Biochar and Charcoal in Animal Production Systems, M. Guo, Z. He,
    S.M. Uchimiya, Eds., Agricultural and Environmental Applications of Biochar: Advances and Barriers, ASPEC Publication, Madison, USA, 2016, pp. 199–224.
  20. M.J. Prauchne, F.R. Reinoso, Chemical versus physical activation of coconut shell: a comparative study, Microporous Mesoporous Mater., 152 (2012) 163–171.
  21. A.M. Aldawsari, M.A. Khan, B.H. Hameed, Z.A. AlOthman, M.R. Siddiqui, A. Yacine Badjah-Hadj-Ahmed,
    I.H. Alsohaimi, Development of activated carbon from Phoenix dactylifera fruit pits: process optimization, characterization, and methylene blue adsorption, Desal. Water Treat., 62 (2017) 273–281.
  22. M. Yusuf, F.M. Elfghi, S.A. Zaidi, E.C. Abdullaha, M.A. Khan, Applications of graphene and its derivatives as an adsorbent for heavy metal and dye removal: a systematic and comprehensive overview, RSC Adv., 5 (2015) 50392–50420.
  23. A.S. Mestre, A.S. Bexiga, M. Proença, M. Andrade, M.L. Pinto, I.I.M. Matos, I. Fonseca, A.P. Carvalho, Activated carbons from sisal waste by chemical activation with K2CO3: kinetics of paracetamol and ibuprofen removal from aqueous solutions, Bioresour. Technol., 102 (2011) 8253–8260.
  24. A. Kumar, H.M. Jena, Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4, Results Phys., 6 (2016) 651–658.
  25. G.O. El-Sayed, M.M. Yehia, A.A. Asaad, Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid, Water Resour. Ind., 7–8 (2014) 66–75.
  26. A.I. Almendros, M.A. Martin-Lara, A. Ronda, A. Perez, G. Blazquez, M. Calero, Physico-chemical characterization of pine cone shell and its use as biosorbent and fuel, Bioresour. Technol., 196 (2015) 406–412.
  27. M.A. Lara, G. Blazquez, A. Ronda, M. Calero, Kinetic study of the pyrolysis of pine cone shell through non-isothermal thermogravimetry: effect of heavy metals incorporated by biosorption, Renewable Energy, 96 (2016) 613–624.
  28. N.M. Mahmoodi, B. Hayati, M. Arami, C. Lan, Adsorption of textile dyes on pine cone from colored wastewater: kinetic, equilibrium and thermodynamic studies, Desalination, 268 (2011) 117–125.
  29. G. Vazquez, J.G. Alvarez, A.I. Garcıa, M.S. Freire, G. Antorrena, Adsorption of phenol on f
    ormaldehyde-pretreated Pinus pinaster bark: equilibrium and kinetics, Bioresour. Technol., 98 (2007) 1535–1540.
  30. T. Calvete, E.C. Lima, N.F. Cardoso, J.C.P. Vaghetti, S.L.P. Dias, F.A. Pavan, Application of carbon adsorbents prepared from Brazilian-pine fruit shell for the removal of reactive orange 16 from aqueous solution: kinetic, equilibrium, and thermodynamic studies, J. Environ. Manage., 91 (2007) 1695–1706.
  31. D. Fatih, Dye biosorption from water employing chemically modified calabrian pine cone shell as an effective biosorbent, Environ. Prog. Sustainable Energy, 34 (2015) 1267–1278.
  32. M. Momoilovic, M. Purenovic, A. Bojic, A. Zarubica, M. Ranđelovic, Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon, Desalination, 276 (2011) 53–59.
  33. G. Duman, Y. Onal, C. Okutucu, S. Onenc, J. Yanik, Production of activated carbon from pine cone and evaluation of its physical, chemical, and adsorption properties, Energy Fuels, 23 (2009) 2197–2204.
  34. N. Mohammed, R. Abu-Zurayk, I. Hamadneh, A. Al-Dujaili, Phenol adsorption on biochar prepared from the pine fruit shells: equilibrium, kinetic and thermodynamics studies, J. Environ. Manage., 226 (2018) 377–385.
  35. F. Boudrahem, I. Yahiaoui, S. Saidi, K. Yahiaoui, L. Kaabache, M. Zennache, F.A. Benissad, Adsorption of pharmaceutical residues on adsorbents prepared from olive stones using mixture design of experiments model, Water Sci. Technol., 80 (2019) 1–12.
  36. I.D. Mall, V.C. Srivastava, G.V.A. Kumar, I.M. Mishra, Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution, Colloids Surf., A, 278 (2006) 175–187.
  37. F.A. Adekola, H.I. Adegoke, Adsorption of blue-dye on activated carbons produced from rice husk, coconut shell and coconut coirpith, Ife J. Sci., 7 (2005) 151–157.
  38. ASTM Standard Standard Test Method for Total Ash Content of Activated Carbon, Designation, 518 (2000) D2866–D2894.
  39. I. Langmuir, The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  40. H.M.F. Freundlich, About the adsorption, Zeitschrift für Physikalische Chemie, 57 (1906) 385–470.
  41. M.M. Dubinin, E.D. Zaverina, L.V. Radushkevich, Sorption and structure of active carbon I. Adsorption of organic vapors, J. Phys. Chem. A, 21 (1947) 1351–1362.
  42. D. Datta, H. Uslu, S. Kumar, Adsorptive separation of Cu2+ from an aqueous solution using trioctylamine supported montmorillonite, J. Chem. Eng. Data, 60 (2015) 3193−3200.
  43. S. Lagergren, About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens Handlingar, 24 (1898) 1–39.
  44. Y.S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater., 36 (2006) 681–689.
  45. S. Wu, L. Zhang, J. Chen, Paracetamol in the environment and its degradation by microorganisms, Appl. Microbiol. Biotechnol., 96 (2012) 875–884.
  46. A. El Hanandeha, Z. Mahdi, M.S. Imtiaz, Modelling of the adsorption of Pb, Cu and Ni ions from single and multicomponent aqueous solutions by date seed derived biochar: comparison of six machine learning approaches, Environ. Res., 192 (2021) 110338, doi: 10.1016/j.envres.2020.110338.
  47. M.C. Silva, L. Spessato, T.L. Silva, G.K.P. Lopes, H.G. Zanella, J.T.C. Yokoyama, A.L. Cazetta, V.C. Almeida, H3PO4–activated carbon fibers of high surface area from banana tree pseudostem fibers: adsorption studies of methylene blue dye in batch and fixed bed systems, J. Mol. Liq., 324 (2020) 114771, doi:10.1016/j.molliq.2020.114771.
  48. G.K. Rajahmundry, C. Garlapati, P.S. Kumar, R.S. Alwi, D.V.N. Vo, Statistical analysis of adsorption isotherm models and its appropriate selection, Chemosphere, 276 (2021) 130176, doi:10.1016/j.chemosphere.2021.130176.
  49. M.S. Shamsuddin, N.R.N. Yusoff, M.A. Sulaiman, Synthesis and characterization of activated carbon produced from Kenaf core fiber using H3PO4 activation, Procedia Chem., 19 (2016) 558–565.
  50. H. Nourmoradi, K.F. Moghadam, A. Jafari, B. Kamarehie, Removal of acetaminophen and ibuprofen from aqueous solutions by activated carbon derived from Quercus Brantii (oak) acorn as a low-cost biosorbent,
    J. Environ. Chem. Eng., 6 (2018) 6807–6815.
  51. S. Wong, N.A.N. Yaccob, N. Ngadi, O. Hassan, I.M. Inuwa, From pollutant to solution of wastewater pollution: synthesis of activated carbon from textile sludge for dyes adsorption, Chin. J. Chem. Eng., 26 (2018) 870–878.
  52. B. Cantrell, G. Hunt, M. Uchimiya, M. Novak, S. Ro, Impact of pyrolysis temperature and manure source on physico-chemical characteristics of biochar, Bioresour. Technol., 107 (2012) 419–428.
  53. P. Fu, W. Yi, X. Bai, Z. Li, S. Hu, J. Xiang, Effect of temperature on gas composition and char structural features of pyrolyzed agricultural residues, Bioresour. Technol., 102 (2011) 8211–8219.
  54. Y. Chen, G. Dai, Q. Gao, Starch nanoparticles−graphene aerogels with high supercapacitor performance and efficient adsorption, ACS Sustainable Chem. Eng., 7 (2019) 14064−14073.
  55. D.C.J. Valle, M.G. Corzo, J.P. Villegas, V.G. Serrano, Study of cherry stones as BM in preparation of carbonaceous adsorbents, J. Anal. Appl. Pyrolysis, 73 (2005) 59–67.
  56. L. Pei, J. Zhou, L. Zhang, Preparation and properties of Ag-coated activated carbon nanocomposites for indoor air quality control, Build. Environ., 63 (2013) 108–113.
  57. A. Puziy, O. Poddubnay, M. Alonso, A.S. Garcıa, F.J. Tascón, Synthetic carbons activated with phosphoric acid: I. Surface chemistry and ion binding properties, Carbon, 40 (2002) 1493–1505.
  58. A. Kumar, H.M. Jena, Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4, Results Phys., 6 (2016) 651–658.
  59. S.M. Yakout, Physico-chemical characteristics of biochar produced from rice straw at different pyrolysis temperature for soil amendment and removal of organics, Proc. Natl. Acad. Sci. India: Sect. A: Phys. Sci., 87 (2017) 207–214.
  60. O. Tepe, Z. Tunç, B. Yıldız, M. Şahin, Efficient removal of paracetamol by manganese oxide octahedral molecular sieves (OMS-2) and persulfate, Water Air Soil Pollut., 238 (2020) 231–246.
  61. M.A. Elbagerma, G. Azimi, H.G.M. Edwards, A.I. Alajtal, I.J. Scowen, In-situ monitoring of pH titration by Raman spectroscopy, Spectrochim. Acta, Part A, 75 (2010) 1403–1410.
  62. I. Villaescusa, N. Fiol, J. Poch, A. Bianchi, C. Bazzicalupi, Mechanism of paracetamol removal by vegetable wastes: the contribution of π–π interactions, hydrogen bonding and hydrophobic effect, Desalination, 270 (2011) 135–142.
  63. M.A. Khan, Z.A. AlOthman, M. Kumar, M.S. Ola, M.R. Siddique, Biosorption potential assessment of modified pistachio shell waste for methylene blue: thermodynamics and kinetics study, Desal. Water Treat., 56 (2015) 146–160.
  64. S. Wong, Y. Lim, N. Ngadi, R. Mat, O. Hassan, I. Inuwa, N.B. Mohamed, J.H. Low, Removal of acetaminophen by activated carbon synthesized from spent tea leaves: equilibrium, kinetics and thermodynamics studies, Powder Technol., 338 (2018) 878–886.
  65. A.M. Salehi, G. Moussavi, Removal of acetaminophen from the contaminated water using adsorption onto carbon activated with NH4Cl, Desal. Water Treat., 57 (2016) 12861–12873.
  66. S.I.Y. Salameh, F.I. Khalili, A.H. Al-Dujaili, Removal of U(VI) and Th(IV) from aqueous solutions by organically modified diatomaceous earth: evaluation of equilibrium, kinetic and thermodynamic data, Int. J. Miner. Process., 168 (2017) 9–18.
  67. M. Ghaedi, A.M. Ghaedi, E. Negintaji, A. Ansari, A. Vafaei, M. Rajabi, Random forest model for removal of bromophenol blue using activated carbon obtained from Astragalus bisulcatus tree, J. Ind. Eng. Chem., 20 (2014) 1793–1803.
  68. M. Galhetas, A.S. Mestre, M.L. Pinto, I. Gulyurtlu, H. Lopes, A.P. Carvalho, Carbon-based materials prepared from pine gasification residues for acetaminophen adsorption, Chem. Eng. J., 240 (2014) 344–351.
  69. I. Cabrita, B. Ruiz, A.S. Mestre, I.M. Fonseca, I.P. Carvalho, C.O. Ania, Removal of an analgesic using activated carbons prepared from urban and industrial residues, Chem. Eng. J., 63 (2010) 249–255.
  70. A.S. Mestre, R.A. Pires, I. Aroso, E.M. Fernandes, M.L. Pinto, R.L. Reis, M.A. Andrade, J. Pires, S.P. Silva,
    A.P. Carvalho, Activated carbons prepared from industrial pre-treated cork: sustainable adsorbents for pharmaceutical compounds removal, Chem. Eng. J., 253 (2014) 408–417.
  71. H.N. Tran, F. Tomul, H.T.H. Nguyen, D.T. Nguyen, E.C. Lima, G.T. Le, C.T. Chang, V. Masindi, S.H. Woo, Innovative spherical biochar for pharmaceutical removal from water: insight into adsorption mechanism, J. Hazard. Mater., 349 (2020) 122255, doi: 10.2136/sssaspecpub63.2014.0043.5.
  72. S. Rangabhashiyam, N. Anu, M.S.G. Nandagopal, N. Selvaraju, Relevance of isotherm models in biosorption of pollutants by agricultural by-products, J. Environ. Chem. Eng., 2 (2014) 398–414.
  73. M. Dutta, U. Das, S. Mondal, S. Bhattachriya, R. Khatun, R. Bagal, Adsoption of acetaminophen by using tea waste derived activated carbon, Int. J. Environ. Sci., 6 (2015) 270–280.
  74. T. Mukoko, M. Mupa, U. Guyo, F. Dziike, Preparation of rice hull activated carbon for the removal of selected pharmaceutical waste compound in hospital effluent, Environ. Anal. Toxicol., S7 (2015) 008, doi:10.4172/2161-0525.S7-008.
  75. R.C. Ferreira, H.H.C.D. Lima, A.A. Candido, O.M.C. Junior, P.A. Arroyo, K.Q.D. Carvalho, G.F. Gauze, M.A.S.D. Barros, Adsorption of paracetamol using activated carbon of dende and babassu coconut mesocarp, Int. J. Biomol. Agric. Food Biotechnol. Eng., 9 (2015) 575–580.
  76. M. Ghaedi, A. Ansari, R. Sahraei, ZnS:Cu nanoparticles loaded on activated carbon as novel adsorbent for kinetic, thermodynamic and isotherm studies of Reactive orange 12 and Direct yellow 12 adsorption, Spectrochim. Acta, Part A, 114 (2013) 687–694.
  77. I. Hamadneh, N.W. Al-Jundub, A.A. Al-Bshaish, A.H. Al-Dujiali, Adsorption of lanthanum(III), samarium(III), europium(III) and gadolinium(III) on raw and modified diatomaceous earth: equilibrium, kinetic and thermodynamic study, Desal. Water Treat., 215 (2021) 119–135.
  78. X. Zhou, X. Zhou, The unit problem in the thermodynamic calculation of adsorption using the Langmuir equation, Chem. Eng. Commun., 201 (2014) 1459–1467.