References

  1. E.A. Akinrinde, Strategies for improving crops’ use-efficiencies of fertilizer nutrients in sustainable agricultural systems, Pak. J. Nutr., 5 (2006) 185–193.
  2. H. Andersson, L. Bergström, F. Djodjic, B. Ulén, H. Kirchmann, Topsoil and subsoil properties influence phosphorus leaching from four agricultural soils, J. Environ. Qual., 42 (2013) 455–463.
  3. L.A. Biederman, W. Stanley Harpole, Biochar and its effects on plant productivity and nutrient cycling:
    a meta‐analysis, GCB Bioenergy, 5 (2013) 202–214.
  4. J.M. Bremner, Chapter 83 – Total Nitrogen, C.A. Black, D.D. Evan, L.E. Ensminger, J.L. White, F.E. Clark,
    R.D. Dinauer, Ed., Method of Soil Analysis Part 2, American Society of Agronomy, Madison, Wisconcin, 1965, pp. 1149–1178.
  5. H.Y. Ch’ng, O.H. Ahmed, N.M. Ab. Majid, Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes, Sci. World J., 2014 (2014a) 506356, doi:10.1155/2014/506356.
  6. B. Chefetz, P.G. Hatcher, Y. Hadar, Y. Chen, Chemical and biological characterization of organic matter during composting of municipal solid waste, J. Environ. Qual., 25 (1996) 776–785.
  7. C.H. Cheng, J. Lehmann, M.H. Engelhard, Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence, Geochim. Cosmochim. Acta, 72 (2008) 1598–1610.
  8. H.Y. Ch’ng, O.H. Ahmed, N.M.A. Majid, Biochar and compost influence the phosphorus availability, nutrients uptake, and growth of maize (Zea mays L.) in tropical acid soil, Pak. J. Agric. Sci., 51 (2014) 797–806.
  9. H.Y. Ch’ng, O.H. Ahmed, N.M.A. Majid, Improving phosphorus availability, nutrient uptake and dry matter production of Zea mays L. on a tropical acid soil using poultry manure biochar and pineapple leaves compost, Exp. Agric., 52 (2016) 447–465.
  10. H.Y. Ch’ng, O.H. Ahmed, N.M.A. Majid, Minimizing phosphorus sorption and leaching in a tropical acid soil using Egypt rock phosphate with organic amendments, Philippine Agric. Sci., 99 (2016) 176–185.
  11. H.Y. Ch’ng, O.H. Ahmed, N.M.A. Majid, M.B. Jalloh, Reducing soil phosphorus fixation to improve yield of maize on a tropical acid soil using compost and biochar derived from agroindustrial wastes, Compost Sci. Util., 25 (2016) 1–13.
  12. B.B. Coelho, R. Murray, D. Lapen, E. Topp, A. Bruin, Phosphorus and sediment loading to surface waters from liquid swine manure application under different drainage and tillage practices, Agric. Water Manage., 104 (2012) 51–61.
  13. A. Cottenie, Soil testing and plant testing as a basis of fertilizer recommendation, FAO Soils Bull., 38 (1980) 70–73.
  14. X. Fang, T. Chua, K. Schmidt-Rohr, M.L. Thompson, Quantitative 13C NMR of whole and fractionated Iowa Mollisols for assessment of organic matter composition, Geochim. Cosmochim. Acta, 74 (2010) 584–598.
  15. L. Han, K.S. Ro, Y. Wang, K. Sun, H. Sun, J.A. Libra, B. Xing, Oxidation resistance of biochars as a function of feedstock and pyrolysis condition, Sci. Total Environ., 616 (2018) 335–344.
  16. Y. Hoseini, R.D. Taleshmikaiel, Comparison of phosphorus adsorption isotherms in soil and its relation to soil properties, Int. J. Agric., 3 (2013) 163–171.
  17. D.A. Laird, The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality, Agron. J., 100 (2008) 178–181.
  18. J. Lehmann, J.P. da Silva, C. Steiner, T. Nehls, W. Zech, B. Glaser, Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments, Plant Soil, 249 (2003) 343–357.
  19. J. Major, C. Steiner, A. Downie, J. Lehmann, Biochar Effects on Nutrient Leaching, In: Biochar for Environmental Management, Routledge, 2012, pp. 303–320.
  20. J. Major, C. Steiner, A. Downie, J. Lehmann, Biochar Effects on Nutrient Leaching, In: Biochar for Environmental Management: Science and Technology, 2009, p. 271.
  21. Malaysian Agricultural Research and Development Institute (MARDI), Jagung Manis Baru (New Sweet Corn): Masmadu, MARDI, Kuala Lumpur, Malaysia, 1993.
  22. J.D. Mao, R.L. Johnson, J. Lehmann, D.C. Olk, E.G. Neves, M.L. Thompson, K. Schmidt-Rohr, Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration, Environ. Sci. Technol., 46 (2012) 9571–9576.
  23. D. Maranguit, T. Guillaume, Y. Kuzyakov, Land-use change affects phosphorus fractions in highly weathered tropical soils, Catena, 149 (2017) 385–393.
  24. A. Mehlich, Determination of P, Ca, Mg, K, Na and NH4, North Carolina State University Soil Test Division, Raleigh, NC, 1953.
  25. M.S. Mkhabela, P.R. Warman, The influence of municipal solid waste compost on yield, soil phosphorus availability and uptake by two vegetable crops grown in a Pugwash sandy loam soil in Nova Scotia, Agric. Ecosyst. Environ., 106 (2005) 57–67.
  26. J. Murphy, J.P. Riley, A modified single solution method for the determination of phosphate in natural waters, Anal. Chim. Acta, 27 (1962) 31–36.
  27. F.X. Narambuye, R.J. Haynes, Effect of organic amendments on soil pH and Al solubility and use of laboratory indicates to predict their liming effect, Soil Sci., 17110 (2006) 754–763.
  28. T. Ohno, A. Amirbahman, Phosphorus availability in boreal forest soils: a geochemical and nutrient uptake modeling approach, Geoderma, 155 (2010) 46–54.
  29. T. Ohno, I.J. Fernandez, S. Hiradate, J.F. Sherman, Effects of soil acidification and forest type on water soluble soil organic matter properties, Geoderma, 140 (2007) 176–187.
  30. H.M. Peech, Hydrogen-Ion Activity, C.A. Black, D.D. Evan, L.E. Ensminger, J.L. White, F.E. Clark, R.C. Dinauer, Eds., Method of Soil Analysis, Part 2, American Society of Agronomy, Madison, Wisconsin, 1965, pp. 914–926.
  31. T.C. Reis, A.A. Rodella, Dynamics of organic matter degradation and pH variation of soil under different temperatures, Revista Brasileira de Ciência do Solo, 26 (2002) 619–626.
  32. J.O. Reuss, D.W. Johnson, Acid Deposition and the Acidification of Soils and Waters (Vol. 59), Springer Science & Business Media, 2012.
  33. D.L. Rowell, Soil Science: Methods and Applications, Department of Soil Science, University of Reading, 1994.
  34. SAS, SAS/STAT Software, SAS Institute, (2nd ed.) Cary, NC.16, Cary, NC, USA, 2013.
  35. S.B. Sharma, R.Z. Sayyed, M.H. Trivedi, T.A. Gobi, Phosphate Solubilizing Microbes: Sustainable Approach for Managing Phosphorus Deficiency in Agricultural Soils, Springer Plus, 2013, p. 587.
  36. D. Solomon, J. Lehmann, J. Thies, T. Schäfer, B. Liang, J. Kinyangi, E. Neves, J. Petersen, F. Luizao, J. Skjemstad, Molecular signature and sources of biochemical recalcitrance of organic C in Amazonian Dark Earths, Geochim. Cosmochim. Acta, 71 (2007) 2285–2298.
  37. K.H. Tan, Soil Sampling, Preparation and Analysis, (2nd ed.), Taylor and Francis Group, Boca Raton, Florida, USA, CRC Press, 2005, pp. 154–174 (1–623).
  38. Y. Tang, H. Zhang, J.L. Schroder, M.E. Payton, D. Zhou, Animal manure reduces aluminium toxicity in an acid soil, Soil Sci. Soc. Am. J., 71 (2007) 1699–1707.
  39. F. Verheijen, S. Jeffery, A.C. Bastos, M. Van der Velde, I. Diafas, Biochar Application to Soils – A Critical Scientific Review of Effects on Soil Properties, Processes and Functions, EUR 24099 EN, European Commission, Luxembourg (Luxembourg), 2010.
  40. C. Vohla, M. Kõiv, H.J. Bavor, F. Chazarenc, Ü. Mander, Filter materials for phosphorus removal from wastewater in treatment wetlands – a review, Ecol. Eng., 37 (2011) 70–89.
  41. Y. Wang, Y. Lin, P.C. Chiu, P.T. Imhoff, M. Guo, Phosphorus release behaviors of poultry litter biochar as a soil amendment, Sci. Total Environ., 512 (2015) 454–463.