References
- J. Bundschuh, J.P. Maity, Geothermal arsenic: occurrence,
mobility and environmental implications, Renewable
Sustainable Energy Rev., 42 (2015) 1214–1222.
- P.L. Smedley, D.G. Kinniburgh, A review of the source,
behaviour and distribution of arsenic in natural waters, Appl.
Geochem., 17 (2002) 517–568.
- J.C. Ng, J.P. Wang, A. Shraim, A global health problem caused
by arsenic from natural sources, Chemosphere, 52 (2003)
1353–1359.
- R. Mohammadyousef, A.A.N. Seyyed, A. Masoud,
H.R. Mohammad, M.B. Seyed, Adsorption and oxidation study
on arsenite removal from aqueous solutions by polyaniline/polyvinyl alcohol composite, J. Water Process Eng., 14 (2016)
101–107.
- M.C. Yeber, C. Escalona, A. Núñez, P. Medina, Photo catalytic
activity under visible light to transform As(III) with nitrogendoped
TiO2 nanoparticles, using urea as a nitrogen source.
Optimization by multivariate analysis, Desal. Water Treat.,
107 (2018) 218–222.
- C.M.K. Katrina, F.K. Len, A.A. Tareq, M. Gordon, Adsorption/desorption of arsenite and arsenate on chitosan and
nanochitosan, Environ. Sci. Pollut. Res., 25 (2018) 14734–14742.
- M. Ma, R.P. Liu, H.J. Liu, J.H. Qu, Effect of moderate preoxidation
on the removal of Microcystis aeruginosa by KMnO4–Fe(II) process: significance of the in-situ formed Fe(III), Water
Res., 46 (2012) 73–81.
- Z.F. He, Q.Y. Zhang, Z. Wei, Y.H. Zhu, X.L. Pan, Simultaneous
removal of As(III) and Cu(II) from real bottom ash leachates by
manganese-oxidizing aerobic granular sludge: performance
and mechanisms, Sci. Total Environ., 700 (2020) 134510,
doi: 10.1016/j.scitotenv.2019.134510.
- S. Sorlini, F. Gialdini, Conventional oxidation treatments for
the removal of arsenic with chlorine dioxide, hypochlorite,
potassium permanganate and monochloramine, Water Res.,
44 (2010) 5653–5659.
- G. Wu, L.Q. Huang, H.C. Jiang, Y.E. Peng, W. Guo, Z.Y. Chen,
W.Y. She, Q.H. Guo, H.L. Dong, Thioarsenate formation
coupled with anaerobic arsenite oxidation by a sulfate-reducing
bacterium isolated from a hot spring, Front. Microbiol., 8 (2017)
1336, doi: 10.3389/fmicb.2017.01336.
- L. Peng, X.H. Dai, Y.W. Liu, W. Wei, J. Sun, G.-J. Xie, D.B. Wang,
S.X. Song, B.-J. Ni, Kinetic assessment of simultaneous removal
of arsenite, chlorate and nitrate under autotrophic and
mixotrophic conditions, Sci. Total Environ., 628 (2018) 85–93.
- J. Cameron Thrash, J.D. Coates, Review: direct and indirect
electrical stimulation of microbial metabolism, Environ. Sci.
Technol., 42 (2008) 3921–3931.
- Y.V. Nancharaiah, S. Venkata Mohan, P.N.L. Lens, Metals
removal and recovery in bioelectrochemical systems: a review,
Bioresour. Technol., 195 (2016) 102–114.
- N. Pous, B. Casentini, S. Rossetti, S. Fazi, S. Puig, F. Aulenta,
Anaerobic arsenite oxidation with an electrode serving as the
sole electron acceptor: a novel approach to the bioremediation
of arsenic-polluted groundwater, J. Hazard. Mater., 283 (2015)
617–622.
- B.E. Logan, M. Elimelech, Membrane-based processes for
sustainable power generation using water, Nature, 488 (2012)
313–319.
- L.P. Huang, P. Zhou, X. Quan, B.E. Logan, Removal of binary
Cr(VI) and Cd(II) from the catholyte of MFCs and determining
their fate in EAB using fluorescence probes, Bioelectrochemistry,
122 (2018) 61–68.
- Y.L. Li, B.G. Zhang, M. Cheng, Y.L. Li, L.T. Hao, H.M. Guo,
Spontaneous arsenic(III) oxidation with bioelectricity generation
in single-chamber microbial fuel cells, J. Hazard. Mater.,
306 (2016) 8–12.
- J. Guo, J.P. Cheng, B.B. Li, J.Q. Wang, P.P. Chu, Performance and
microbial community in the biocathode of microbial fuel cells
under different dissolved oxygen concentrations, J. Electroanal.
Chem., 833 (2019) 433–440.
- A. Xue, Z.-Z. Shen, B. Zhao, H.-Z. Zhao, Arsenite removal
from aqueous solution by a microbial fuel cell–zerovalent iron
hybrid process, J. Hazard. Mater., 261 (2013) 621–627.
- H.M. Guo, D. Zhang, D.G. Wen, Y. Wu, P. Ni, Y.X. Jiang, Q. Guo,
F.L. Li, Zheng, Y.Z. Zhou, Arsenic mobilization in aquifers
of the southwest Songnen basin, P.R. China: evidences from
chemical and isotopic characteristics, Sci. Total Environ.,
490 (2014) 590–602.
- J.M. Gossett, Sustained aerobic oxidation of vinyl chloride at
low oxygen concentrations, Environ. Sci. Technol., 44 (2010)
1405–1411.
- W.F. Chen, R. Parette, J.Y. Zou, F.S. Cannon, B.A. Dempsey,
Arsenic removal by iron-modified activated carbon, Water Res.,
41 (2007) 1851–1858.
- Z.M. Gu, B.L. Deng, Arsenic sorption and redox transformation
on iron-impregnated ordered mesoporous carbon, Appl.
Organomet. Chem., 21 (2007) 750–757.
- S. Vadahanambi, S.-H. Lee, W.-J. Kim, I.-K. Oh, Arsenic
removal from contaminated water using three-dimensional
graphene-carbon nanotube-iron oxide nanostructures, Environ.
Sci. Technol., 47 (2013) 10510–10517.
- M.C. Sforna, P. Philippot, A. Somogyi, M.A. van Zuilen,
K. Medjoubi, B. Schoepp-Cothenet, W. Nitschke, P.T. Visscher,
Evidence for arsenic metabolism and cycling by microorganisms
2.7 billion years ago, Nat. Geosci., 7 (2014) 811–815.
- V.K. Nguyen, Y.H. Park, J. Yu, T.H. Lee, Simultaneous
arsenite oxidation and nitrate reduction at the electrodes of
bioelectrochemical systems, Environ. Sci. Pollut. Res., 23 (2016)
19978–19988.
- S.B. Velasquez-Ort, E. Yu, K.P. Katuri, I.M. Head, T.P. Curtis,
K. Scott, Evaluation of hydrolysis and fermentation rates in
microbial fuel cells, Appl. Microbiol. Biotechnol., 90 (2011)
789–798.
- C.H. Feng, X.J. Yue, F.B. Li, C.H. Wei, Bio-current as an indicator
for biogenic Fe(II) generation driven by dissimilatory iron
reducing bacteria, Biosens. Bioelectron., 39 (2013) 51–56.
- H.P. Liu, B.G. Zhang, Y. Liu, Z.J. Wang, L.T. Hao, Continuous
bioelectricity generation with simultaneous sulfide and
organics removals in an anaerobic baffled stacking microbial
fuel cell, Int. J. Hydrogen Energy, 40 (2015) 8128–8136
- P.L. Ji, R. Tang, P. He, S.J. Yuan, W. Wang, Z.-H. Hu,
Characterization of arsenic species in the anaerobic granular
sludge treating roxarsone-contaminated wastewater, Chem.
Eng. J., 327 (2017) 162–168.
- H.M. Guo, Y. Li, K. Zhao, Y. Ren, C. Wei, Removal of arsenite
from water by synthetic siderite: behaviors and mechanisms,
J. Hazard. Mater., 186 (2011) 1847–1854.
- W.J. Sun, R. Sierra-Alvarez, L. Milner, J.A. Field, Anaerobic
oxidation of arsenite linked to chlorate reduction, Appl.
Environ. Microbiol., 76 (2010) 6804–6811.
- J.K. Fredrickson, M.F. Romine, A.S. Beliaev, J.M. Auchtung,
M.E. Driscoll, T.S. Gardner, K.H. Nealson,
A.L. Osterman,
G. Pinchuk, J.L. Reed, D.A. Rodionov, J.L.M. Rodrigues,
D.A. Saffarini, M.H. Serres,
A.M. Spormann, I.B. Zhulin,
J.M. Tiedje, Towards environmental systems biology of
Shewanella, Nat. Rev. Microbiol., 6 (2008) 592–603.
- H. Azarbad, M. Niklińska, R. Laskowski, N.M. van Straalen,
C.A.M. van Geste, J.Z. Zhou, Z.L. He, C.Q. Wen,
F.M.R. Wilfred,
Microbial community composition and functions are resilient
to metal pollution along two forest soil gradients, FEMS
Microbiol. Ecol., 91 (2015) 1–11.
- R.S. Oremland, S.E. Hoeft, J.M. Santini, N. Bano,
R.A. Hollibaugh, J.T. Hollibaugh, Anaerobic oxidation of
arsenite in Mono Lake water and by a facultative, arseniteoxidizing
chemoautotroph, strain MLHE-1, Appl. Environ.
Microbiol., 68 (2002) 4795–4802.
- J. Zhang, W.X. Zhou, B.B. Liu, J. He, Q.R. Shen, F.-J. Zhao,
Anaerobic arsenite oxidation by an autotrophic arseniteoxidizing
bacterium from an arsenic-contaminated paddy soil,
Environ. Sci. Technol., 49 (2015) 5956–5964.
- P. Li, Y.H. Wang, X.Y. Dai, R. Zhang, Z. Jiang, D.W. Jiang, S. Wang,
H.C. Jiang, Y.X. Wang, H.L. Dong, Microbial community in high
arsenic shallow groundwater aquifers in Hetao Basin of Inner
Mongolia, China, PLoS One, 10 (2015) e0125844, doi: 10.1371/journal.pone.0125844.
- M. Sultana, C. Härtig, B. Planer-Friedrich, J. Seifert,
M. Schlömann, Bacterial communities in Bangladesh aquifers
differing in aqueous arsenic concentration, Geomicrobiol. J.,
28 (2011) 198–211.
- H. Fan, C. Su, Y. Wang, J. Yao, K. Zhao, Y. Wang, G. Wang,
Sedimentary arsenite-oxidizing and
arsenate-reducing bacteria
associated with high arsenic groundwater from Shanyin,
Northwestern China,
J. Appl. Microbiol., 105 (2008) 529–539.
- Z.F. Liu, N.-U. Frigaard, K. Vogl, T. Iino, M. Ohkuma,
J. Overmann, D.A. Bryant, Complete genome of Ignavibacterium
album, a metabolically versatile, flagellated, facultative
anaerobe from the phylum Chlorobi, Front. Microbiol., 3 (2012)
185, doi: 10.3389/fmicb.2012.00185.
- J.M. Macy, J.M. Santini, B.V. Pauling, A.H. O’Neill, L.I. Sly,
Two new arsenate/sulfate-reducing bacteria: mechanisms of
arsenate reduction, Arch. Microbiol., 173 (2000) 49–57.
- Z.N. Zhang, N.Y. Yin, H.L. Du, X.L. Cai, Y.S. Cui, The fate of
arsenic adsorbed on iron oxides in the presence of arseniteoxidizing
bacteria, Chemosphere, 151 (2016) 108–115.
- S.B. Liang, A.G. McDonald, E.R. Coats, Lactic acid production
with undefined mixed culture fermentation of potato peel
waste, Waste Manage., 34 (2014) 2022–2027.
- Y.M. Sun, J.C. Wei, P. Liang, X. Huang, Electricity generation
and microbial community changes in microbial fuel cells
packed with different anodic materials, Bioresour. Technol.,
102 (2011) 10886–10891.