References

  1. J. Bundschuh, J.P. Maity, Geothermal arsenic: occurrence, mobility and environmental implications, Renewable Sustainable Energy Rev., 42 (2015) 1214–1222.
  2. P.L. Smedley, D.G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters, Appl. Geochem., 17 (2002) 517–568.
  3. J.C. Ng, J.P. Wang, A. Shraim, A global health problem caused by arsenic from natural sources, Chemosphere, 52 (2003) 1353–1359.
  4. R. Mohammadyousef, A.A.N. Seyyed, A. Masoud, H.R. Mohammad, M.B. Seyed, Adsorption and oxidation study on arsenite removal from aqueous solutions by polyaniline/polyvinyl alcohol composite, J. Water Process Eng., 14 (2016) 101–107.
  5. M.C. Yeber, C. Escalona, A. Núñez, P. Medina, Photo catalytic activity under visible light to transform As(III) with nitrogendoped TiO2 nanoparticles, using urea as a nitrogen source. Optimization by multivariate analysis, Desal. Water Treat., 107 (2018) 218–222.
  6. C.M.K. Katrina, F.K. Len, A.A. Tareq, M. Gordon, Adsorption/desorption of arsenite and arsenate on chitosan and nanochitosan, Environ. Sci. Pollut. Res., 25 (2018) 14734–14742.
  7. M. Ma, R.P. Liu, H.J. Liu, J.H. Qu, Effect of moderate preoxidation on the removal of Microcystis aeruginosa by KMnO4–Fe(II) process: significance of the in-situ formed Fe(III), Water Res., 46 (2012) 73–81.
  8. Z.F. He, Q.Y. Zhang, Z. Wei, Y.H. Zhu, X.L. Pan, Simultaneous removal of As(III) and Cu(II) from real bottom ash leachates by manganese-oxidizing aerobic granular sludge: performance and mechanisms, Sci. Total Environ., 700 (2020) 134510, doi: 10.1016/j.scitotenv.2019.134510.
  9. S. Sorlini, F. Gialdini, Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine, Water Res., 44 (2010) 5653–5659.
  10. G. Wu, L.Q. Huang, H.C. Jiang, Y.E. Peng, W. Guo, Z.Y. Chen, W.Y. She, Q.H. Guo, H.L. Dong, Thioarsenate formation coupled with anaerobic arsenite oxidation by a sulfate-reducing bacterium isolated from a hot spring, Front. Microbiol., 8 (2017) 1336, doi: 10.3389/fmicb.2017.01336.
  11. L. Peng, X.H. Dai, Y.W. Liu, W. Wei, J. Sun, G.-J. Xie, D.B. Wang, S.X. Song, B.-J. Ni, Kinetic assessment of simultaneous removal of arsenite, chlorate and nitrate under autotrophic and mixotrophic conditions, Sci. Total Environ., 628 (2018) 85–93.
  12. J. Cameron Thrash, J.D. Coates, Review: direct and indirect electrical stimulation of microbial metabolism, Environ. Sci. Technol., 42 (2008) 3921–3931.
  13. Y.V. Nancharaiah, S. Venkata Mohan, P.N.L. Lens, Metals removal and recovery in bioelectrochemical systems: a review, Bioresour. Technol., 195 (2016) 102–114.
  14. N. Pous, B. Casentini, S. Rossetti, S. Fazi, S. Puig, F. Aulenta, Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: a novel approach to the bioremediation of arsenic-polluted groundwater, J. Hazard. Mater., 283 (2015) 617–622.
  15. B.E. Logan, M. Elimelech, Membrane-based processes for sustainable power generation using water, Nature, 488 (2012) 313–319.
  16. L.P. Huang, P. Zhou, X. Quan, B.E. Logan, Removal of binary Cr(VI) and Cd(II) from the catholyte of MFCs and determining their fate in EAB using fluorescence probes, Bioelectrochemistry, 122 (2018) 61–68.
  17. Y.L. Li, B.G. Zhang, M. Cheng, Y.L. Li, L.T. Hao, H.M. Guo, Spontaneous arsenic(III) oxidation with bioelectricity generation in single-chamber microbial fuel cells, J. Hazard. Mater., 306 (2016) 8–12.
  18. J. Guo, J.P. Cheng, B.B. Li, J.Q. Wang, P.P. Chu, Performance and microbial community in the biocathode of microbial fuel cells under different dissolved oxygen concentrations, J. Electroanal. Chem., 833 (2019) 433–440.
  19. A. Xue, Z.-Z. Shen, B. Zhao, H.-Z. Zhao, Arsenite removal from aqueous solution by a microbial fuel cell–zerovalent iron hybrid process, J. Hazard. Mater., 261 (2013) 621–627.
  20. H.M. Guo, D. Zhang, D.G. Wen, Y. Wu, P. Ni, Y.X. Jiang, Q. Guo, F.L. Li, Zheng, Y.Z. Zhou, Arsenic mobilization in aquifers of the southwest Songnen basin, P.R. China: evidences from chemical and isotopic characteristics, Sci. Total Environ., 490 (2014) 590–602.
  21. J.M. Gossett, Sustained aerobic oxidation of vinyl chloride at low oxygen concentrations, Environ. Sci. Technol., 44 (2010) 1405–1411.
  22. W.F. Chen, R. Parette, J.Y. Zou, F.S. Cannon, B.A. Dempsey, Arsenic removal by iron-modified activated carbon, Water Res., 41 (2007) 1851–1858.
  23. Z.M. Gu, B.L. Deng, Arsenic sorption and redox transformation on iron-impregnated ordered mesoporous carbon, Appl. Organomet. Chem., 21 (2007) 750–757.
  24. S. Vadahanambi, S.-H. Lee, W.-J. Kim, I.-K. Oh, Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures, Environ. Sci. Technol., 47 (2013) 10510–10517.
  25. M.C. Sforna, P. Philippot, A. Somogyi, M.A. van Zuilen, K. Medjoubi, B. Schoepp-Cothenet, W. Nitschke, P.T. Visscher, Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago, Nat. Geosci., 7 (2014) 811–815.
  26. V.K. Nguyen, Y.H. Park, J. Yu, T.H. Lee, Simultaneous arsenite oxidation and nitrate reduction at the electrodes of bioelectrochemical systems, Environ. Sci. Pollut. Res., 23 (2016) 19978–19988.
  27. S.B. Velasquez-Ort, E. Yu, K.P. Katuri, I.M. Head, T.P. Curtis, K. Scott, Evaluation of hydrolysis and fermentation rates in microbial fuel cells, Appl. Microbiol. Biotechnol., 90 (2011) 789–798.
  28. C.H. Feng, X.J. Yue, F.B. Li, C.H. Wei, Bio-current as an indicator for biogenic Fe(II) generation driven by dissimilatory iron reducing bacteria, Biosens. Bioelectron., 39 (2013) 51–56.
  29. H.P. Liu, B.G. Zhang, Y. Liu, Z.J. Wang, L.T. Hao, Continuous bioelectricity generation with simultaneous sulfide and organics removals in an anaerobic baffled stacking microbial fuel cell, Int. J. Hydrogen Energy, 40 (2015) 8128–8136
  30. P.L. Ji, R. Tang, P. He, S.J. Yuan, W. Wang, Z.-H. Hu, Characterization of arsenic species in the anaerobic granular sludge treating roxarsone-contaminated wastewater, Chem. Eng. J., 327 (2017) 162–168.
  31. H.M. Guo, Y. Li, K. Zhao, Y. Ren, C. Wei, Removal of arsenite from water by synthetic siderite: behaviors and mechanisms, J. Hazard. Mater., 186 (2011) 1847–1854.
  32. W.J. Sun, R. Sierra-Alvarez, L. Milner, J.A. Field, Anaerobic oxidation of arsenite linked to chlorate reduction, Appl. Environ. Microbiol., 76 (2010) 6804–6811.
  33. J.K. Fredrickson, M.F. Romine, A.S. Beliaev, J.M. Auchtung, M.E. Driscoll, T.S. Gardner, K.H. Nealson,
    A.L. Osterman, G. Pinchuk, J.L. Reed, D.A. Rodionov, J.L.M. Rodrigues, D.A. Saffarini, M.H. Serres,
    A.M. Spormann, I.B. Zhulin, J.M. Tiedje, Towards environmental systems biology of Shewanella, Nat. Rev. Microbiol., 6 (2008) 592–603.
  34. H. Azarbad, M. Niklińska, R. Laskowski, N.M. van Straalen, C.A.M. van Geste, J.Z. Zhou, Z.L. He, C.Q. Wen,
    F.M.R. Wilfred, Microbial community composition and functions are resilient to metal pollution along two forest soil gradients, FEMS Microbiol. Ecol., 91 (2015) 1–11.
  35. R.S. Oremland, S.E. Hoeft, J.M. Santini, N. Bano, R.A. Hollibaugh, J.T. Hollibaugh, Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arseniteoxidizing chemoautotroph, strain MLHE-1, Appl. Environ. Microbiol., 68 (2002) 4795–4802.
  36. J. Zhang, W.X. Zhou, B.B. Liu, J. He, Q.R. Shen, F.-J. Zhao, Anaerobic arsenite oxidation by an autotrophic arseniteoxidizing bacterium from an arsenic-contaminated paddy soil, Environ. Sci. Technol., 49 (2015) 5956–5964.
  37. P. Li, Y.H. Wang, X.Y. Dai, R. Zhang, Z. Jiang, D.W. Jiang, S. Wang, H.C. Jiang, Y.X. Wang, H.L. Dong, Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China, PLoS One, 10 (2015) e0125844, doi: 10.1371/journal.pone.0125844.
  38. M. Sultana, C. Härtig, B. Planer-Friedrich, J. Seifert, M. Schlömann, Bacterial communities in Bangladesh aquifers differing in aqueous arsenic concentration, Geomicrobiol. J., 28 (2011) 198–211.
  39. H. Fan, C. Su, Y. Wang, J. Yao, K. Zhao, Y. Wang, G. Wang, Sedimentary arsenite-oxidizing and
    arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China,
    J. Appl. Microbiol., 105 (2008) 529–539.
  40. Z.F. Liu, N.-U. Frigaard, K. Vogl, T. Iino, M. Ohkuma, J. Overmann, D.A. Bryant, Complete genome of Ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the phylum Chlorobi, Front. Microbiol., 3 (2012) 185, doi: 10.3389/fmicb.2012.00185.
  41. J.M. Macy, J.M. Santini, B.V. Pauling, A.H. O’Neill, L.I. Sly, Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction, Arch. Microbiol., 173 (2000) 49–57.
  42. Z.N. Zhang, N.Y. Yin, H.L. Du, X.L. Cai, Y.S. Cui, The fate of arsenic adsorbed on iron oxides in the presence of arseniteoxidizing bacteria, Chemosphere, 151 (2016) 108–115.
  43. S.B. Liang, A.G. McDonald, E.R. Coats, Lactic acid production with undefined mixed culture fermentation of potato peel waste, Waste Manage., 34 (2014) 2022–2027.
  44. Y.M. Sun, J.C. Wei, P. Liang, X. Huang, Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials, Bioresour. Technol., 102 (2011) 10886–10891.