References

  1. A.E. Ofomaja, E.B. Naidoo, S.J. Modise, Removal of copper(II) from aqueous solution by pine and base modified pine cone powder as biosorbent, J. Hazard. Mater., 168 (2009) 909–917.
  2. T. Kalak, A. Kłopotek, R. Cierpiszewski, Effective adsorption of lead ions using fly ash obtained in the novel circulating fluidized bed combustion technology, Microchem. J., 145 (2019) 1011–1025.
  3. WHO, Guidelines for Drinking-Water Quality, Vol. 1., WHO Library Cataloguing-in-Publication Data, Geneva, 2006.
  4. P. Kaewsarn, Q. Yu, Cadmium(II) removal from aqueous solutions by pre-treated biomass of marine alga Padina sp., Environ. Pollut., 112 (2001) 209–213.
  5. J.G. Arnason, B.A. Fletcher, A 40+ year record of Cd, Hg, Pb, and U deposition in sediments of Patroon Reservoir, Albany County, NY, USA, Environ. Pollut., 123 (2003) 383–391.
  6. E.I. Unuabonah, K.O. Adebowale, B.I. Olu-Owolabi, L.Z. Yang, L.X. Kong, Adsorption of Pb(II) and Cd(II) from aqueous solutions onto sodium tetraborate-modified kaolinite clay: equilibrium and thermodynamic studies, Hydrometallurgy, 93 (2008) 1–9.
  7. J.M. Duan, B. Su, Removal characteristics of Cd(II) from acidic aqueous solution by modified steel-making slag, Chem. Eng. J., 246 (2014) 160–167.
  8. Environmental Protection 2014, Statistical Yearbook of GUS, Warsaw, 2015.
  9. AKPGO, Update National Waste Management Plan 2014, Warsaw, 2015.
  10. T. Pająk, Suszenie i spalanie osadów w Polsce i krajach UE. VI Ogólnopolska Konferencja Szkoleniowa: Suszenie i termiczne przekształcanie osadów ściekowych, Warszawa, 2012.
  11. T. Kalak, R. Cierpiszewski, Comparative studies on the adsorption of Pb(II) ions by fly ash and slag obtained from CFBC technology, Pol. J. Chem. Technol., 21 (2019) 72–81.
  12. T. Kalak, K. Marciszewicz, J. Piepiórka-Stepuk, Highly effective adsorption process of Ni(II) ions with the use of sewage sludge fly ash generated by circulating fluidized bed combustion (CFBC) technology, Materials (Basel), 14 (2021) 3106, doi: 10.3390/ma14113106.
  13. T. Kalak, R. Cierpiszewski, M. Ulewicz, High efficiency of the removal process of Pb(II) and Cu(II) ions with the use of fly ash from incineration of sunflower and wood waste using the CFBC technology, Energies, 14 (2021) 1771, doi: 10.3390/en14061771.
  14. T. Kalak, Y. Tachibana, Removal of lithium and uranium from seawater using fly ash and slag generated in the CFBC technology, RSC Adv., 11 (2021) 21964–21978.
  15. K.S. Rao, M. Mohapatra, S. Anand, P. Venkateswarlu, Review on cadmium removal from aqueous solutions, Int. J. Eng. Sci. Technol., 2 (2010) 81–103.
  16. C.W. Cheung, J.F. Porter, G. McKay, Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char, J. Chem. Technol. Biotechnol., 75 (2000) 963–970.
  17. J. Wu, J. Lu, T.H. Chen, Z. He, Y. Su, X. Jin, X.Y. Yao, In-situ biotreatment of acidic mine drainage using straw as sole substrate, Environ. Earth Sci., 60 (2010) 421–429.
  18. O. Malerius, J. Werther, Modelling the adsorption of mercury in the flue gas of sewage sludge incineration, Chem. Eng. J., 96 (2003) 197–205.
  19. D. Fytili, A. Zabaniotou, Utilization of sewage sludge in EU application of old and new methods—a review, Renewable Sustainable Energy Rev., 12 (2008) 116–140.
  20. H. Yuansheng, S. Mengshu, What are the environmental advantages of circulating fluidized bed technology?—a case study in China, Energy, 220 (2021) 119711, doi: 10.1016/j. energy.2020.119711.
  21. A. Henclik, J. Kulczycka, K. Gorazda, Z. Wzorek, Conditions of sewage sludge management in Poland and Germany, Inżynieria i Ochrona Środowiska, 17 (2014) 185–197.
  22. B. Nowak, P. Aschenbrenner, F. Winter, Heavy metal removal from sewage sludge ash and municipal solid waste fly ash — a comparison, Fuel Process. Technol., 105 (2013) 195–201.
  23. G. Itskos, N. Koukouzas, C. Vasilatos, I. Megremi, A. Moutsatsou, Comparative uptake study of toxic elements from aqueous media by the different particle-size-fractions of fly ash, J. Hazard. Mater., 183 (2010) 787–792.
  24. S.V. Yadla, V. Sridevi, M.V.V. Chandana Lakshmi, Adsorption performance of fly ash for the removal of lead, Int. J. Eng. Res. Technol., 1 (2012) 1–7.
  25. B. Kostura, R. Dvorsky, J. Kukutschová (Lešková), S. Študentová, J. Bednář, P. Mančík, Preparation of sorbent with a high active sorption surface based on blast furnace slag for phosphate removal from wastewater, Environ. Prot. Eng., 43 (2017) 161–168.
  26. H. Rong, T. Wang, M. Zhou, H. Wang, H. Hou, Y. Xue, Combustion characteristics and slagging during co-combustion of rice husk and sewage sludge blends, Energies, 10 (201) 438, doi: 10.3390/en10040438.
  27. M. Mohebbi, F. Rajabipour, B.E. Scheetz, Reliability of Loss on Ignition (LOI) Test for Determining the Unburned Carbon Content in Fly Ash, 2015 World of Coal Ash (WOCA) Conference in Nasvhille, TN – May 5–7, 2015.
  28. I.J. Alinnor, Adsorption of heavy metal ions from aqueous solution by fly ash, Fuel, 86 (2007) 853–857.
  29. J. Liu, Q. Qiu, F. Xing, D. Pan, Permeation properties and pore structure of surface layer of fly ash concrete, Materials (Basel), 7 (2014) 4282–4296.
  30. Y.-S. Ho, Effect of pH on lead removal from water using tree fern as the sorbent, Bioresour. Technol., 96 (2005) 1292–1296.
  31. C.-H. Weng, C.P. Huang, Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash, Colloids Surf., A, 247 (2004) 137–143.
  32. L.X. Ma, Q. Wei, Y.Q. Chen, Q.Y. Song, C.H. Sun, Z.Q. Wang, G.H. Wu, Removal of cadmium from aqueous solutions using industrial coal fly ash-nZVI, R. Soc. Open Sci., 5 (2018) 171051, doi: 10.1098/rsos.171051.
  33. W.J. Li, S.Z. Zhou, X.F. Wang, Z. Xu, C. Yuan, Y.C. Yu, Q.Z. Zhang, W.X. Wang, Integrated evaluation of aerosols from regional brown hazes over northern China in winter: concentrations, sources, transformation, and mixing states, J. Geophys. Res., 116 (2011) D015099, doi: 10.1029/2010JD015099.
  34. A. Assi, F. Bilo, A. Zanoletti, J. Ponti, A. Valsesia, R. La Spina, L.E. Depero, E. Bontempi, Review of the reuse possibilities concerning ash residues from thermal process in a mediumsized urban system in Northern Italy, Sustainability, 12 (2020) 4193, doi: 10.3390/su12104193.
  35. M. Martínez, N. Miralles, S. Hidalgo, N. Fiol, I. Villaescusa, J. Poch, Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste, J. Hazard. Mater., 133 (2006) 203–211.
  36. Z. Kavaliauskas, V. Valincius, G. Stravinskas, M. Milieska, N. Striugas, J. The investigation of solid slag obtained by neutralization of sewage sludge, J. Air Waste Manage. Assoc., 65 (2015) 1292–1296.
  37. S. Ueda, H. Koyo, T. Ikeda, Y. Kariya, M. Maeda, Infrared emission spectra of CaF2-CaO-SiO2 melt, ISIJ Int., 40 (2000) 739–743.
  38. O. Iliashevsky, E. Rubinov, Y. Yagen, M. Gottlieb, Functionalization of silica surface with UV-active molecules by multivalent organosilicon spacer, Open J. Inorg. Chem., 6 (2016) 163–174.
  39. X.Q. Cui, S.Y. Fang, Y.Q. Yao, T.Q. Li, Q.J. Ni, X. Yang, Z.L. He, Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar, Sci. Total Environ., 562 (2016) 517–525.
  40. I. Mobasherpour, E. Salahi, M. Pazouki, Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: adsorption isotherm study, Arabian J. Chem., 5 (2012) 439–446.
  41. V. Mînzatu, C.-M. Davidescu, P. Negrea, M. Ciopec, C. Muntean, I. Hulka, C. Paul, A. Negrea, N. Duteanu, Synthesis, characterization and adsorptive performances of a composite material based on carbon and iron oxide particles, Int. J. Mol. Sci., 20 (2019) 1609, doi: 10.3390/ijms20071609.
  42. N.S. Langeroodi, Z. Farhadravesh, A.D. Khalaji, Optimization of adsorption parameters for Fe(III) ions removal from aqueous solutions by transition metal oxide nanocomposite, Green Chem. Lett. Rev., 11 (2018) 404–413.
  43. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  44. S.B. Wang, E. Ariyanto, Competitive adsorption of malachite green and Pb ions on natural zeolite, J. Colloid Interface Sci., 314 (2007) 25–31.
  45. P. Senthil Kumar, C. Vincent, K. Kirthika, K. Sathish Kumar, Kinetics and equilibrium studies of Pb2+ ion removal from aqueous solutions by use of nano-silversol-coated activated carbon, Braz. J. Chem. Eng., 27 (2010) 339–346.
  46. M. Ajmal, R.A.K. Rao, S. Anwar, J. Ahmad, R. Ahmad, Adsorption studies on rice husk: removal and recovery of Cd(II) from wastewater, Bioresour. Technol., 86 (2003) 147–149.
  47. T.K. Naiya, A.K. Bhattacharya, S.K. Das, Removal of Cd(II) from aqueous solutions using clarified sludge, J. Colloid Interface Sci., 325 (2008) 48–56.
  48. T.K. Naiya, P. Chowdhury, A.K. Bhattacharya, S.K. Das, Sawdust and neem bark as low-cost natural biosorbent for adsorptive removal of Zn(II) and Cd(II) ions from aqueous solutions, Chem. Eng. J., 148 (2009) 68–79.
  49. A. Papandreou, C.J. Stournaras, D. Panias, Copper and cadmium adsorption on pellets made from fired coal fly ash, J. Hazard. Mater., 148 (2007) 538–547.
  50. Ö. Yavuz, R. Guzel, F. Aydin, I. Tegin, R. Ziyadanogullari, Removal of cadmium and lead from aqueous solution by calcite, Pol. J. Environ. Stud., 16 (2007) 467–471.
  51. E. López, B. Soto, M. Arias, A. Núñez, D. Rubinos, M.T. Barral, Adsorbent properties of red mud and its use for wastewater treatment, Water Res., 32 (1998) 1314–1322.
  52. M. Ulmanu, E. Marañón, Y. Fernández, L. Castrillón, I. Anger, D. Dumitriu, Removal of copper and cadmium ions from diluted aqueous solutions by low cost and waste material adsorbents, Water Air Soil Pollut., 142 (2003) 357–373.
  53. Y. Bulut, Z. Tez, Removal of heavy metals from aqueous solution by sawdust adsorption, J. Environ. Sci., 19 (2007) 160–166.
  54. V.K. Gupta, C.K. Jain, I. Ali, M. Sharma, V.K. Saini, Removal of cadmium and nickel from wastewater using bagasse fly ash — a sugar industry waste, Water Res., 37 (2003) 4038–4044.