References
- R. Sedlak, Phosphorus and Nitrogen Removal from Municipal
Wastewater: Principles and Practice, Routledge, 2018,
doi: 10.1201/9780203743546.
- J.A. Oleszkiewicz, J.L. Barnard, Nutrient removal technology in
North America and the European Union: a review, Water Qual.
Res. J., 41 (2006) 449–462.
- M.S. Nasr, M.A.E. Moustafa, H.A.E. Seif, G. El Kobrosy,
Modelling and simulation of German BIOGEST/EL-AGAMY
wastewater treatment plants–Egypt using GPS-X simulator,
Alexandria Eng. J., 50 (2011) 351–357.
- W. Singhirunnusom, M.K. Stenstrom, A critical analysis of
economic factors for diverse wastewater treatment processes:
case studies in Thailand, J. Environ. Eng. Manage., 20 (2010)
263–268.
- S. Jafarinejad, A framework for the design of the future energyefficient,
cost-effective, reliable, resilient, and sustainable fullscale
wastewater treatment plants, Curr. Opin. Environ. Sci.
Health, 13 (2020) 91–100.
- K.P. Tsagarakis, D.D. Mara, A.N. Angelakis, Application of
cost criteria for selection of municipal wastewater treatment
systems, Water Air Soil Pollut., 142 (2003) 187–210.
- J.B. Copp, B.R. Johnson, A. Shaw, M.S. Burbano, B. Narayanan,
K. Frank, D. Kinnear, H. Melcer, K. Brischke,
A balancing act:
the consulting engineers’ pragmatic view of process modelling,
Water Sci. Technol., 59 (2009) 763–769.
- S.F. Pereira, Modelling of a wastewater treatment plant using
GPS-X, Faculdade de Ciências e Tecnologia, 2014.
- H.N. Ai, M.L. Li, Q. He, Simulation and optimization of
denitrifying phosphorus removal in A2/O, Adv. Mater. Res.,
374 (2012) 553–559.
- S. Jafarinejad, Simulation for the performance and economic
evaluation of conventional activated sludge process replacing
by sequencing batch reactor technology in a petroleum
refinery wastewater treatment plant, Chem. Eng., 3 (2019)
45–57.
- E.F. Latif, E.S. Elmolla, U.F. Mahmoud, M.M. Saleh, Intermittent
cycle extended aeration system pilot scale (ICEAS-PS) for
wastewater treatment: experimental results and process
simulation, Int. J. Environ. Sci. Technol., 17 (2020) 3261–3270.
- E.F. Latif, Applying novel methods in conventional activated
sludge plants to treat low-strength wastewater, Environ. Monit.
Assess., 194 (2022) 1–14, doi: 10.1007/s10661-022-09968-9.
- A.M. Faris, H.M. Zwain, M. Hosseinzadeh, S.M. Siadatmousavi,
Modeling of novel processes for eliminating sidestreams
impacts on full-scale sewage treatment plant using GPS-X7,
Sci. Rep., 12 (2022) 1–17.
- N. Abbasi, M. Ahmadi, M. Naseri, Quality and cost analysis of
a wastewater treatment plant using GPS-X and CapdetWorks
simulation programs, J. Environ. Manage., 284 (2021) 111993,
doi:10.1016/j.jenvman.2021.111993.
- A.U.A. Arif, M.T. Sorour, S.A. Aly, Cost analysis of activated
sludge and membrane bioreactor WWTPs using CapdetWorks
simulation program: case study of Tikrit WWTP (middle Iraq),
Alexandria Eng. J., 59 (2020) 4659–4667.
- R.G. Hunter, J.W. Day, A.R. Wiegman, R.R. Lane, Municipal
wastewater treatment costs with an emphasis on assimilation
wetlands in the Louisiana coastal zone, Ecol. Eng., 137 (2019)
21–25.
- A. Zadorojniy, S. Wasserkrug, S. Zeltyn, V. Lipets, Unleashing
analytics to reduce costs and improve quality in wastewater
treatment, INFORMS J. Appl. Anal., 49 (2019) 262–268.
- M. Simon-Várhelyi, V.M. Cristea, A.V. Luca, Reducing
energy costs of the wastewater treatment plant by improved
scheduling of the periodic influent load, J. Environ. Manage.,
262 (2020) 110294, doi:10.1016/j.jenvman.2020.110294.
- R. Piotrowski, A. Paul, M. Lewandowski, Improving SBR
performance alongside with cost reduction through optimizing
biological processes and dissolved oxygen concentration
trajectory, Appl. Sci., 9 (2019) 2268, doi:10.3390/app9112268.
- Y. Jiang, A. Dinar, P. Hellegers, Economics of social trade-off:
balancing wastewater treatment cost and ecosystem damage,
J. Environ. Manage., 211 (2018) 42–52.
- M. Mirabi, M. Karrabi, M. Gheibi, An economic analysis of
industrial wastewater treatment systems using multi-attribute
decision-making methods (case study: Toos Industrial Estate,
Mashhad, Iran), Desal. Water Treat., 146 (2019) 131–140.
- W.T. Li, J.J. Kim, J.G. Hong, Cost comparative analysis to
evaluate wastewater service charge savings strategies, Procedia
Eng., 145 (2016) 74–81.
- L. Desa, P. Kängsepp, L. Quadri, G. Bellotti, K. Sørensen,
C. Pellicer-Nàcher, Improving and upgrading an existing
activated sludge with a compact MBBR–disc filters parallel line
for municipal wastewater treatment in touristic alpine areas,
Water Pract. Technol., 15 (2020) 515–527.
- D. Karna, C. Visvanathan, In: Water and Wastewater Treatment
Technologies, From Conventional Activated Sludge Process
to Membrane-Aerated Biofilm Reactors: Scope, Applications,
and Challenges, Springer Nature Singapore Pte Ltd., 152 Beach
Road, #21-01/04 Gateway East, Singapore 189721, Singapore,
2019, pp. 237–263.
- Metcalf & Eddy, M. Abu-Orf, G. Bowden, W. Pfrang,
G. Tchobanoglous, Wastewater Engineering: Treatment and
Resource Recovery, McGraw-Hill Education, 2 Penn Plaza,
New York, NY 10121, United States of America, 2014.
- H. Ødegaard, The Moving Bed Biofilm Reactor. Water
Environmental Engineering and Reuse of Water, Hokkaido
Press, Hokkaido, 1999, pp. 250–305.
- W.E. Federation, Biofilm Reactors – WEF MoP 35, McGraw-Hill
Education, New York, 2011.
- L.K. Wang, N.K. Shammas, Y.-T. Hung, Advanced
Biological Treatment Processes, Humana Press, c/o Springer
Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA, 2010.
- A. Rivas, I. Irizar, E. Ayesa, Model-based optimisation of
wastewater treatment plants design, Environ. Model. Software,
23 (2008) 435–450.
- M. Nowrouzi, H. Abyar, A framework for the design and
optimization of integrated fixed-film activated sludgemembrane
bioreactor configuration by focusing on costcoupled
life cycle assessment, J. Cleaner Prod., 296 (2021)
126557, doi: 10.1016/j.jclepro.2021.126557.
- Hydromantis, Inc., GPS-X Technical Reference, Hydromantis,
Inc., Consulting Engineers, Hamilton, ON, Canada, 2019.
- S. Jafarinejad, Cost estimation and economical evaluation
of three configurations of activated sludge process for a
wastewater treatment plant (WWTP) using simulation, Appl.
Water Sci., 7 (2017) 2513–2521.
- Hydromantis, Inc., CapdetWorks Ver. 4: State-of-the-Art
Software for the Design and Cost Estimation of Wastewater
Treatment Plants. User’s Guide, Hydromantis, Inc., Consulting
Engineers: Hamilton, ON, Canada, 2018.
- M. Nowrouzi, H. Abyar, A. Rostami, Cost coupled removal
efficiency analyses of activated sludge technologies to achieve
the cost-effective wastewater treatment system in the meat
processing units, J. Environ. Manage., 283 (2021) 111991,
doi: 10.1016/j.jenvman.2021.111991.
- H.R. Zeinaddine, A. Ebrahimi, V. Alipour, L. Rezaei, Removal
of nitrogen and phosphorous from wastewater of seafood
market by intermittent cycle extended aeration system (ICEAS),
J. Health Sci. Surveill. Syst., 1 (2013) 89–93.
- A.H. Mahvi, A. Mesdaghinia, F. Karakani, Feasibility of
continuous flow sequencing batch reactor in domestic
wastewater treatment, Am. J. Appl. Sci., 1 (2004) 348–353.
- M.C. Collivignarelli, A. Abbà, M. Carnevale Miino, V. Torretta,
What advanced treatments can be used to minimize the
production of sewage sludge in WWTPs?, Appl. Sci., 9 (2019)
2650, doi: 10.3390/app9132650.
- M.C. Collivignarelli, A. Abbà, G. Bertanza, Oxygen transfer
improvement in MBBR process, Environ. Sci. Pollut. Res.,
36 (2019) 10727–10737.
- G.T. Daigger, J.P. Boltz, Oxygen transfer in moving bed biofilm
reactor and integrated fixed film activated sludge processes:
Daigger and Boltz, Water Environ. Res., 90 (2018) 615–622.
- S. Sander, J. Behnisch, M. Wagner, Energy, cost and design
aspects of coarse-and fine-bubble aeration systems in the
MBBR IFAS process, Water Sci. Technol., 75 (2017) 890–897.
- X.-J. Wang, S.-Q. Xia, L. Chen, J.-F. Zhao, N.J. Renault,
J.-M. Chovelon, Nutrients removal from municipal wastewater
by chemical precipitation in a moving bed biofilm reactor,
Process Biochem., 41 (2006) 824–828.
- M. Piculell, T. Welander, K. Jönsson, Organic removal activity
in biofilm and suspended biomass fractions of MBBR systems,
Water Sci. Technol., 69 (2014) 55–61.