References
- E.D. Coyle, R.A. Simmons, Understanding the Global Energy
Crisis, Purdue University Press, USA, 2014.
- UNWS, United Nations, Water Scarcity, USA, 2014. Available at:
https://www.un.org/waterforlifedecade/scarcity.shtml
- Net Zero by 2050: A Roadmap for the Global
Energy Sector, International Energy Agency, 8 May,
2021. Available at: https://www.iea.org/events/net-zero-by-2050-a-roadmap-for-the-global-energy-system
- M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-waterenvironment
nexus underpinning future desalination
sustainability, Desalination, 413 (2017) 52–64.
- A.P. Avrin, G. He, D.M. Kammen, Assessing the impacts of
nuclear desalination and geoengineering to address China’s
water shortages, Desalination, 360 (2015) 1–7.
- K. Elsaid, E.T. Sayed, B.A.A. Yousef, M.K.H. Rabaia,
M.A. Abdelkareem, A.G. Olabi, Recent progress on the
utilization of waste heat for desalination: a review, Energy
Convers. Manage., 221 (2020) 113105.
- E. Jones, M. Qadir, M.T.H.V. Vliet, V. Smakhtin, S.M. Kang, The
state of desalination and brine production:
A global outlook,
Sci. Total Environ., 657 (2019) 1343–1356.
- G.L. Ruan, M. Wang, Z.H. An, G.R. Xu, Y.H. Ge, H.L. Zhao,
Progress and perspectives of desalination in China, Membranes,
11 (2021) 206, doi: 10.3390/membranes11030206.
- S.H. Zhou, Y.L. Guo, X.S. Mu, S.Q. Shen, Effect of design
parameters on thermodynamic losses of the heat transfer
process in LT-MEE desalination plant, Desalination, 375 (2015)
40–47.
- Y.L. Guo, M.L. Bao, L.Y. Gong, S.Q. Shen, Effects of preheater
arrangement on performance of MED desalination system,
Desalination, 496 (2020) 114702, doi: 10.1016/j.desal.2020.114702.
- S. Sadri, R.H. Khoshkhoo, M. Ameri, Optimum exergoeconomic
modeling of novel hybrid desalination system (MEDAD+RO),
Energy, 149 (2018) 74–83.
- A.C. Santos, A.L. Betancor, A.M.D. Suárez, A.G. Martínez,
E.R. Asensio, Large-scale desalination based on parabolic
trough collectors and double-effect absorption heat pumps,
Energy Rep., 6 (2020) 207–222.
- O.A. Hamed, H. Miyamura, A New Trend in MED Large Scale
Commercial Plants (10 MIGD) Using Tri-Hybrid NF/RO/MED
Configuration, ARWADEX 2010, Riyadh, 2010.
- A.A. Karaghouli, L.L. Kazmerski, Energy consumption
and water production cost of conventional and
renewable-energy-powered desalination processes, Renewable
Sustainable Energy Rev., 24 (2013) 343–356.
- V.G. Gude, Geothermal source potential for water desalination –
current status and future perspective, Renewable Sustainable
Energy Rev., 57 (2016) 1038–1065.
- R. Ahmadi, S.M. Pourfatemi, S. Ghaffari, Exergoeconomic
optimization of hybrid system of GT, SOFC and MED
implementing genetic algorithm, Desalination, 411 (2017) 76–88.
- A. Baccioli, M. Antonelli, U. Desideri, A. Grossi, Thermodynamic
and economic analysis of the integration of Organic Rankine
Cycle and Multi-Effect Distillation in waste-heat recovery
applications, Energy, 161 (2018) 456–469.
- H.R. Dastgerdi, P.B. Whittaker, H.T. Chua, New MED based
desalination process for low grade waste heat, Desalination,
395 (2016) 57–71.
- A.K. Adak, P.K. Tewari, Technical feasibility study for coupling
a desalination plant to an advanced heavy water reactor,
Desalination, 337 (2014) 76–82.
- K. Ansari, H. Sayyaadi, M. Amidpour, Thermoeconomic
optimization of a hybrid pressurized water reactor (PWR)
power plant coupled to a multi-effect distillation desalination
system with thermo-vapor compressor (MED-TVC), Energy,
35 (2010) 1981–1996.
- Z. Dong, M. Liu, X.J. Huang, Y.J. Zhang, Z.Y. Zhang, Y.J. Dong,
Dynamical modeling and simulation analysis of a nuclear
desalination plant based on the MED-TVC process, Desalination,
456 (2019) 121–125.
- I.S.A. Mutaz, Features of multi-effect evaporation desalination
plants, Desal. Water Treat., 54 (2015) 3227–3235.
- S. Ihm, O.Y.A. Najdi, O.A. Hamed, G. Jun, H. Chung, Energy
cost comparison between MSF, MED and SWRO: case studies
for dual purpose plants, Desalination, 397 (2016) 116–125.
- F.A. Juwayhel, H.E. Dessouky, H. Ettouney, Analysis of singleeffect
evaporator desalination systems combined with vapor
compression heat pumps, Desalination, 114 (1997) 253–275.
- R. Kouhikamali, M. Sanaei, M. Mehdizadeh, Process
investigation of different locations of thermo-compressor
suction in MED-TVC plants, Desalination 280 (2011) 134–138.
- I.S. Al-Mutaz, I. Wazeer, Optimization of location of thermocompressor
suction in MED-TVC desalination plants, Desal.
Water Treat., 57 (2016) 26562–26576.
- S.H. Zhou, L.Y. Gong, X.Y. Liu, S.Q. Shen, Mathematical
modeling and performance analysis for multi-effect
evaporation/multi-effect evaporation with thermal vapor
compression desalination system, Appl. Therm. Eng., 159 (2019)
113759, doi: 10.1016/j.applthermaleng.2019.113759.
- K.A. Khalid, M.A. Antar, A. Khalifa, O.A. Hamed, Allocation of
thermal vapor compressor in multi effect desalination systems
with different feed configurations, Desalination, 426 (2018)
164–173.
- B.O. Delgado, P. Palenzuela, D.C.A. Padilla, Parametric
study of a multi-effect distillation plant with thermal vapor
compression for its integration into a Rankine cycle power
block, Desalination, 394 (2016) 18–29.
- F.N. Alasfour, M.A. Darwish, A.O.B. Amer, Thermal analysis of
ME-TVC+MEE desalination systems, Desalination, 174 (2005)
39–61.
- H. El-Dessouky, I. Alatiqi, S. Bingulac, H. Ettouney, Steady-state
analysis of the multiple effect evaporation desalination process,
Chem. Eng. Technol., 21 (1998) 437–451.
- A.O.B. Amer, Development and optimization of ME-TVC
desalination system, Desalination, 249 (2009) 1315–1331.
- S.Q. Shen, S.H. Zhou, Y. Yang, L.P. Yang, X.H. Liu, Study
of steam parameters on the performance of a TVC-MED
desalination plant, Desal. Water Treat., 33 (2011) 300–308.
- M.L. Elsayed, O. Mesalhy, R.H. Mohammed, L.C. Chow, Exergy
and thermo-economic analysis for MED-TVC desalination
systems, Desalination, 447 (2018) 29–42.
- R.K. Kamali, A. Abbassi, S.A.S. Vanini, M.S. Avval,
Thermodynamic design and parametric study of MED-TVC,
Desalination, 222 (2008) 596–604.
- O.A. Hamed, A.M.Z. Amamiri, S. Aly, N. Lior, Thermal
performance and exergy analysis of a thermal vapor
compression desalination system, Energy Convers. Manage.,
37 (1996) 379–387.
- H.S. Choi, T.J. Lee, Y.G. Kim, S.L. Song, Performance
improvement of multiple-effect distiller with thermal vapor
compression system by exergy analysis, Desalination,
182 (2005) 239–249.
- L.P Yang, S.Q. Shen, Assessment of energy requirement for
water production at dual-purpose plants in China, Desalination,
205 (2007) 214–223.
- H.T. El-Dessouky, H.M. Ettouney, F.A. Juwayhel, Multiple
effect evaporation-vapour compression desalination processes,
Chem. Eng. Res. Des., 78 (2000) 662–676.
- Y.H. Zhu, W.J. Cai, Y.Z. Li, C.Y. Wen, Anode gas recirculation
behavior of a fuel ejector in hybrid solid oxide fuel cell systems:
performance evaluation in three operational modes, J. Power
Sources, 185 (2008) 1122–1130.
- D.W. Sun, Experimental investigation of the performance
characteristics of a steam jet refrigeration system, Energy
Sources, 19 (1997) 349–367.
- M. Engelbracht, R. Peters, L. Blum, D. Stolten, Comparison of
a fuel-driven and steam-driven ejector in solid oxide fuel cell
systems with anode off-gas recirculation: part-load behaviour,
J. Power Sources, 277 (2015) 251–260.
- F. Wang, Y.N. Yang, W.W. Ding, S.P. Yin, Performance analysis
of ejector at off-design condition with an unconstant-pressure
mixing model, Int. J. Refrig., 99 (2019) 204–212.
- N. Ruangtrakoon, T. Thongtip, An experimental investigation
to determine the optimal heat source temperature for R141b
ejector operation in refrigeration cycle, Appl. Therm. Eng.,
170 (2020) 114841, doi: 10.1016/j.applthermaleng.2019.114841.
- J. Yan, W.J. Cai, Area ratio effects to the performance of aircooled
ejector refrigeration cycle with R134a refrigerant, Energy
Convers. Manage., 53 (2012) 240–246.
- G. Besagni, R. Mereu, F. Inzoli, Ejector refrigeration: a
comprehensive review, Renewable Sustainable Energy Rev.,
53 (2016) 373–407.
- Y.Z. Tang, Z.L. Liu, Y.X. Li, N. Yang, Y.D. Wan, K.J. Chua,
A double-choking theory as an explanation of the evolution
laws of ejector performance with various operational and
geometrical parameters, Energy Convers. Manage., 206 (2020)
112499, doi: 10.1016/j.enconman.2020.112499.
- Y. Han, X.D. Wang, A.C.Y. Yuen, A. Li, L.X. Guo, G.H. Yeoh,
J.Y. Tu, Characterization of choking flow behaviors inside steam
ejectors based on the ejector refrigeration system, Int. J. Refrig.,
113 (2020) 296–307.
- R. Yapıcı, H.K. Ersoy, A. Aktoprakoğlu, H.S. Halkacı, O. Yiğit,
Experimental determination of the optimum performance of
ejector refrigeration system depending on ejector area ratio, Int.
J. Refrig., 31 (2008) 1183–1189.
- R.H. Yen, B.J. Huang, C.Y. Chen, T.Y. Shiu, C.W. Cheng,
S.S. Chen, K. Shestopalov, Performance optimization for a
variable throat ejector in a solar refrigeration system, Int. J.
Refrig., 36 (2013) 1512–1520.
- Z.Z. Chen, X. Jin, A. Shimizu, E. Hihara, C.B. Dang, Effects of
the nozzle configuration on solar-powered variable geometry
ejectors, Sol. Energy, 150 (2017) 275–286.
- C. Li, Y.Z. Li, W.J. Cai, Y. Hu, H.R. Chen, J. Yan, Analysis on
performance characteristics of ejector with variable arearatio
for multi-evaporator refrigeration system based on
experimental data, Appl. Therm. Eng., 68 (2014) 125–132.
- W.D. Gu, X.L. Wang, L. Wang, X.H. Yin, H.B. Liu, Performance
investigation of an auto-tuning area ratio ejector for MEDTVC
desalination system, Appl. Therm. Eng., 155 (2019)
470–479.
- I.S. Park, Robust numerical analysis based design of the
thermal vapor compressor shape parameters for multi-effect
desalination plants, Desalination, 242 (2009) 245–255.
- Y. Yang, S.Q. Shen, S.H. Zhou, X.S Mu, K. Zhang, Research for
the adjustable performance of the thermal vapor compressor in
the MED-TVC system, Desal. Water Treat., 53 (2015) 1725–1734.
- B. Shahzamanian, S. Varga, J. Soares, A.I.P. Marrero,
A.C. Oliveira, Performance evaluation of a variable geometry
ejector applied in a multi-effect thermal vapor compression
desalination system, Appl. Therm. Eng., 195 (2021) 117177,
doi: 10.1016/j.applthermaleng.2021.117177.
- E.Y. Sokolov, N.M. Zinger, Jet Apparatuses (Q.Y. Hang Trans.),
Science Press, Beijing, 1977, pp. 17–78.
- Y.M. Chen, C.Y. Sun, Experimental study of the performance
characteristics of a steam-ejector refrigeration system, Exp.
Therm. Fluid Sci., 15 (1997) 384–394.
- C. Vereda, R. Ventas, A. Lecuona, M. Venegas, Study of an
ejector-absorption refrigeration cycle with an adaptable ejector
nozzle for different working conditions, Appl. Energy, 97 (2012)
305–312.