References
- R.D. Jones, H.B. Jampani, J.L. Newman, A.S. Lee, Triclosan: a
review of effectiveness and safety in health care settings, Am. J.
Infect. Control., 28 (2000) 184–196.
- A.B. Dann, A. Hontela, Triclosan: environmental exposure,
toxicity and mechanisms of action, J. Appl. Toxicol., 31 (2011)
285–311.
- I. Aguilar-Romero, E. Romero, R.-M. Wittich, P. van Dillewijn,
Bacterial ecotoxicity and shifts in bacterial communities
associated with the removal of ibuprofen, diclofenac and
triclosan in biopurification systems, Sci. Total Environ.,
741 (2020) 140461, doi: 10.1016/j.scitotenv.2020.140461.
- S. Lu, N. Wang, S. Ma, X. Hu, L. Kang, Y. Yu, Parabens and
triclosan in shellfish from Shenzhen coastal waters: bioindication
of pollution and human health risks, Environ. Pollut., 246 (2019)
257–263.
- G.S. Dhillon, S. Kaur, R. Pulicharla, S.K. Brar, M. Cledón,
M. Verma, R.Y. Surampalli, Triclosan: current status, occurrence,
environmental risks and bioaccumulation potential, Int. J.
Environ. Res. Public Health, 12 (2015) 5657–5684.
- D.R. Orvos, D.J. Versteeg, J. Inauen, M. Capdevielle,
A. Rothenstein, V. Cunningham, Aquatic toxicity of triclosan,
Environ. Toxicol. Chem., 21 (2002) 1338–1349.
- A. Thompson, P. Griffin, R. Stuetz, E. Cartmell, The fate and
removal of triclosan during wastewater treatment, Water
Environ. Res., 77 (2005) 63–67.
- Z. Luo, Y. He, D. Zhi, L. Luo, Y. Sun, E. Khan, D.C. Tsang,
Current progress in treatment techniques of triclosan from
wastewater: a review, Sci. Total Environ., 696 (2019) 133990, doi:
10.1016/j.scitotenv.2019.133990.
- T.A. Saleh, Protocols for synthesis of nanomaterials, polymers,
and green materials as adsorbents for water treatment
technologies, Environ. Technol. Innovation, 24 (2021) 101821,
doi: 10.1016/j.eti.2021.101821.
- C. Lei, Y.Y. Hu, M.Z. He, Adsorption characteristics of triclosan
from aqueous solution onto cetylpyridinium bromide (CPB)
modified zeolites, Chem. Eng. J., 219 (2013) 361–370.
- T.A. Saleh, M. Mustaqeem, M. Khaled, Developing water
treatment technologies in removing heavy metals from
wastewater: a review, Environ. Nanotechnol. Monit. Manage.,
17 (2022) 100617, doi:10.1016/j.enmm.2021.100617.
- M. Kim, J. Lee, C. Lee, S. Park, Thermal treatment of attapulgite
for phosphate removal: a cheap and natural adsorbent with high
adsorption capacity, Desal. Water Treat., 114 (2018) 175–184.
- S.K. Behera, S.Y. Oh, H.S. Park, Sorption of triclosan onto
activated carbon, kaolinite and montmorillonite: effects of pH,
ionic strength, and humic acid, J. Hazard. Mater., 179 (2010)
684–691.
- H.H. Cho, H. Huang, K. Schwab, Effects of solution chemistry
on the adsorption of ibuprofen and triclosan onto carbon
nanotubes, Langmuir, 27 (2011) 12960–12967.
- A. Dąbrowski, P. Podkościelny, Z. Hubicki, M. Barczak,
Adsorption of phenolic compounds by activated carbon—a
critical review, Chemosphere, 58 (2005) 1049–1070.
- L. Li, P.A. Quinlivan, D.R. Knappe, Effects of activated carbon
surface chemistry and pore structure on the adsorption of
organic contaminants from aqueous solution, Carbon, 40 (2002)
2085–2100.
- Y. Tong, B.K. Mayer, P.J. McNamara, Triclosan adsorption using
wastewater biosolids-derived biochar, Environ. Sci. Water Res.
Technol., 2 (2016) 761–768.
- H. Bamdad, K. Hawboldt, S. MacQuarrie, A review on common
adsorbents for acid gases removal: focus on biochar, Renewable
Sustainable Energy Rev., 81 (2018) 1705–1720.
- M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan,
D. Mohan, Y.S. Ok, Biochar as a sorbent for contaminant management
in soil and water: a review, Chemosphere, 99 (2014) 19–33.
- J. Li, Y. Li, Y. Wu, M. Zheng, A comparison of biochars from
lignin, cellulose and wood as the sorbent to an aromatic
pollutant, J. Hazard. Mater., 280 (2014) 450–457.
- P.J.M. Carrott, M.R. Carrott, Lignin–from natural adsorbent
to activated carbon: a review, Bioresource Technol., 98 (2007)
2301–2312.
- Y. Li, S.M. Shaheen, J. Rinklebe, N.L. Ma, Y. Yang,
M.A. Ashraf, W.X. Peng, Pyrolysis of Aesculus chinensis Bunge
seed with Fe2O3/NiO as nanocatalysts for the production of biooil
material, J. Hazard. Mater., 416 (2021) 126012, doi: 10.1016/j.
jhazmat.2021.126012.
- L.R. Drăghici, D.I. Hădărugă, N.G. Hădărugă, Aesculus species:
a review on biologically active compounds and their possible
applications, J. Agroaliment. Proc. Technol., 26 (2020) 422–428.
- H. Kimura, S. Ogawa, A. Sugiyama, M. Jisaka, T. Takeuchi,
K. Yokota, Anti-obesity effects of highly polymeric
proanthocyanidins from seed shells of Japanese horse chestnut
(Aesculus turbinata Blume), Food Res. Int., 44 (2011) 121–126.
- H. Kimura, S. Ogawa, T. Ishihara, M. Maruoka, S. Tokuyama-Nakai, M. Jisaka, K. Yokota, Antioxidant activities and
structural characterization of flavonol O-glycosides from seeds
of Japanese horse chestnut (Aesculus turbinata BLUME), Food
Chem., 228 (2017) 348–355.
- J.C. Carlson, M.I. Stefan, J.M. Parnis, C.D. Metcalfe, Direct UV
photolysis of selected pharmaceuticals, personal care products
and endocrine disruptors in aqueous solution, Water Res.,
84 (2015) 350–361.
- L. Shi, X. Zho, S. Zhou, Y. Zhang, Adsorption Isotherm and
Thermodynamic of Triclosan on Activated Sludge, International
Conference on Electric Technology and Civil Engineering.,
IEEE, Lushan, China, 2011, pp. 975–978.
- A.A. Sharipova, S.B. Aidarova, N.E. Bekturganova, A. Tleuova,
M. Schenderlein, O. Lygina, R. Miller, Triclosan as model system
for the adsorption on recycled adsorbent materials, Colloids
Surf., A, 505 (2016) 193–196.
- M. He, Z. Xu, Y. Sun, P.S. Chan, I. Lui, D.C.W. Tsang, Critical
impacts of pyrolysis conditions and activation methods on
application-oriented production of wood waste-derived
biochar, Bioresour. Technol., 341 (2021) 125811, doi: 10.1016/j.biortech.2021.125811.
- L.M. Machado, S.F. Lütke, D. Perondi, M. Godinho, M.L. Oliveira,
G.C. Collazzo, G.L. Dotto, Simultaneous production of mesoporous
biochar and palmitic acid by pyrolysis of brewing
industry wastes, Waste Manage., 113 (2020) 96–104.
- J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett,
J.M. Haynes, N. Pernicone, K.K. Unger, Recommendations for
the characterization of porous solids (Technical Report), Pure
Appl. Chem., 66 (1994) 1739–1758.
- K. Zhu, X. Wang, M. Geng, D. Chen, H. Lin, H. Zhang, Catalytic
oxidation of clofibric acid by peroxydisulfate activated with
wood-based biochar: effect of biochar pyrolysis temperature,
performance and mechanism, Chem. Eng. J., 374 (2019)
1253–1263.
- K.H. Kim, J.Y. Kim, T.S. Cho, J.W. Choi, Influence of pyrolysis
temperature on physico-chemical properties of biochar obtained
from the fast pyrolysis of pitch pine (Pinus rigida), Bioresour.
Technol., 118 (2012) 158–162.
- D. Chen, X. Yu, C. Song, X. Pang, J. Huang, Y. Li, Effect of
pyrolysis temperature on the chemical oxidation stability of
bamboo biochar, Bioresour. Technol., 218 (2016) 1303–1306.
- W.A.W.A.K. Ghani, A. Mohd, G. da Silva, R.T. Bachmann,
Y.H. Taufiq-Yap, U. Rashid, A.H. Al-Muhtaseb, Biochar
production from waste rubber-wood-sawdust and its potential
use in C sequestration: chemical and physical characterization,
Ind. Crops Prod., 44 (2013) 18–24.
- Y. Jia, S. Shi, J. Liu, S. Su, Q. Liang, X. Zeng, T. Li, Study of
the effect of pyrolysis temperature on the Cd2+ adsorption
characteristics of biochar, Appl. Sci., 8 (2018) 1019, doi: 10.3390/app8071019.
- B. Khiari, I. Ghouma, A.I. Ferjani, A.A. Azzaz, S. Jellali,
L. Limousy, M. Jeguirim, Kenaf stems: thermal characterization
and conversion for biofuel and biochar production, Fuel,
262 (2020) 116654, doi:10.1016/j.fuel.2019.116654.
- K.B. Cantrell, P.G. Hunt, M. Uchimiya, J.M. Novak, K.S. Ro,
Impact of pyrolysis temperature and manure source on physicochemical
characteristics of biochar, Bioresour. Technol.,
107 (2012) 419–428.
- B. Zhao, D. O’Connor, J. Zhang, T. Peng, Z. Shen, D.C. Tsang,
D. Hou, Effect of pyrolysis temperature, heating rate, and
residence time on rapeseed stem derived biochar, J. Cleaner
Prod., 174 (2018) 977–987.
- T.A. Saleh, The influence of treatment temperature on the
acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4, Appl. Surf. Sci., 257 (2011) 7746–7751.
- C. Trigo, L. Cox, K. Spokas, Influence of pyrolysis temperature
and hardwood species on resulting biochar properties and their
effect on azimsulfuron sorption as compared to other sorbents,
Sci. Total Environ., 566 (2016) 1454–1464.
- J. Gao, Y. Liu, X. Li, M. Yang, J. Wang, Y. Chen, A promising
and cost-effective biochar adsorbent derived from jujube pit for
the removal of Pb(II) from aqueous solution, Sci. Rep., 10 (2020)
1–13.
- B.B. Kaudal, D. Chen, D.B. Madhavan, A. Downie, A. Weatherley,
An examination of physical and chemical properties of urban
biochar for use as growing media substrate, Biomass Bioenergy,
84 (2016) 49–58.
- H. Zeng, H. Zeng, H. Zhang, A. Shahab, K. Zhang, Y. Lu,
I. Nabi, F. Naseem, H. Ullah, Efficient adsorption of Cr(VI) from
aqueous environments by phosphoric acid activated eucalyptus
biochar, J. Cleaner Prod., 286 (2021) 124964, doi: 10.1016/j.jclepro.2020.124964.
- W.W. Simons, The Sadtler Handbook of Infrared Spectra,
Sadtler Research Laboratories, Philadelphia, 1978.
- V. Sharma, S. Bhardwaj, R. Kumar, On the spectroscopic
investigation of Kohl stains via ATR-FTIR and multivariate
analysis: application in forensic trace evidence, Vib. Spectrosc.,
101 (2019) 81–91.
- P. Kumar, P. Kumar, P.V. Rao, N.V. Choudary, G. Sriganesh, Saw
dust pyrolysis: effect of temperature and catalysts, Fuel, 199
(2017) 339–345.
- B. Soni, S.K. Karmee, Towards a continuous pilot scale
pyrolysis based biorefinery for production of biooil and
biochar from sawdust, Fuel, 271 (2020) 117570, doi: 10.1016/j.fuel.2020.117570.
- U. Moralı, S. Şensöz, Pyrolysis of hornbeam shell (Carpinus
betulus L.) in a fixed bed reactor: characterization of bio-oil and
bio-char, Fuel, 150 (2015) 672–678.
- B. Czech, M. Kończak, M. Rakowska, P. Oleszczuk, Engineered
biochars from organic wastes for the adsorption of diclofenac,
naproxen and triclosan from water systems, J. Cleaner Prod.,
288 (2021) 125686, doi:10.1016/j.jclepro.2020.125686.
- S.Y. Oh, Y.D Seo, Sorption of halogenated phenols and
pharmaceuticals to biochar: affecting factors and mechanisms,
Environ. Sci. Pollut. Res., 23 (2016) 951–961.
- I. Kozyatnyk, P. Oesterle, C. Wurzer, O. Mašek, S. Jansson,
Removal of contaminants of emerging concern from
multicomponent systems using carbon dioxide activated
biochar from lignocellulosic feedstocks, Bioresour. Technol.,
340 (2021) 125561, doi: 10.1016/j.biortech.2021.125561.
- M. Yang, P. Guo, X. Feng, W. Zhang, G. Yang, Solid solution
approach to the design of copper mixed-triazolate multivariate-MOFs for the efficient adsorption of triclosan, Microporous
Mesoporous Mater., 324 (2021) 111297, doi: 10.1016/j.micromeso.2021.111297.
- D.M. Aragón, M.A. Ruidiaz, E.F. Vargas, C. Bregni,
D.A. Chiappetta, A. Sosnik, F. Martínez, Solubility of the
antimicrobial agent triclosan in organic solvents of different
hydrogen bonding capabilities at several temperatures,
J. Chem. Eng. Data, 53 (2008) 2576–2580.
- J. Wang, X. Guo, Adsorption kinetic models: physical meanings,
applications, and solving methods, J. Hazard. Mater., 390 (2020)
122156, doi: 10.1016/j.jhazmat.2020.122156.
- H. Li, W. Zhang, Z. Zhang, X. Zhang, Sorption of triclosan
to carbon nanotubes: the combined effects of sonication,
functionalization and solution chemistry, Sci. Total Environ.,
580 (2017) 1318–1326.
- A.W. Ip, J.P. Barford, G. McKay, A comparative study on the
kinetics and mechanisms of removal of Reactive Black 5 by
adsorption onto activated carbons and bone char, Chem. Eng. J.,
157 (2010) 434–442.
- Z. Cheng, X. Liu, M. Han, W. Ma, Adsorption kinetic character
of copper ions onto a modified chitosan transparent thin
membrane from aqueous solution, J. Hazard. Mater., 182 (2010)
408–415.
- K. Mohanty, M. Jha, B.C. Meikap, M.N. Biswas, Preparation and
characterization of activated carbons from Terminalia arjuna nut
with zinc chloride activation for the removal of phenol from
wastewater, Ind. Eng. Chem. Res., 44 (2005) 4128–4138.
- S.K. Singh, T.G. Townsend, D. Mazyck, T.H. Boyer, Equilibrium
and intraparticle diffusion of stabilized landfill leachate onto
micro-and meso-porous activated carbon, Water Res., 46 (2012)
491–499.
- R. Baccar, M. Sarrà, J. Bouzid, M. Feki, P. Blánquez, Removal of
pharmaceutical compounds by activated carbon prepared from
agricultural by-product, Chem. Eng. J., 211 (2012) 310–317.
- R. Wirasnita, T. Hadibarata, A.R.M. Yusoff, Z. Yusop, Removal
of bisphenol A from aqueous solution by activated carbon
derived from oil palm empty fruit bunch, Water Air Soil Pollut.,
225 (2014) 1–12.
- K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption
isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
- S. Zhou, Y. Shao, N. Gao, J. Deng, C. Tan, Equilibrium, kinetic,
and thermodynamic studies on the adsorption of triclosan onto
multi‐walled carbon nanotubes, Clean–Soil Air Water, 41 (2013)
539–547.
- N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh, S. Agarwal,
Adsorption process of methyl orange dye onto mesoporous
carbon material–kinetic and thermodynamic studies, J. Colloid
Interface Sci., 362 (2011) 457–462.
- A.O. Dada, A.P. Olalekan, A.M. Olatunya, O.J.I.J.C. Dada,
Langmuir, Freundlich, Temkin and Dubinin–Radushkevich
isotherms studies of equilibrium sorption of Zn2+ unto
phosphoric acid modified rice husk, IOSR. J. Appl. Chem.,
3 (2012) 38–45.
- J.T. Yokoyama, A.L. Cazetta, K.C. Bedin, L. Spessato,
J.M. Fonseca, P.S. Carraro, V.C. Almeida, Stevia residue as new
precursor of CO2-activated carbon: optimization of preparation
condition and adsorption study of triclosan, Ecotoxicol.
Environ. Saf., 172 (2019) 403–410.
- M. Triwiswara, C.G. Lee, J.K. Moon, S.J. Park, Adsorption of
triclosan from aqueous solution onto char derived from palm
kernel shell, Desal. Water Treat., 177 (2020) 71–79.
- E.-J. Cho, J.-K. Kang, J.-K. Moon, B.-H. Um, C.-G. Lee, S.H. Jeong,
S.-J. Park, Removal of triclosan from aqueous solution via
adsorption by kenaf‐derived biochar: its adsorption mechanism
study via spectroscopic and experimental approaches,
J. Environ. Chem. Eng., 9 (2021) 106343, doi: 10.1016/j.jece.2021.106343.
- M. Triwiswara, J.K. Kang, J.K. Moon, C.G. Lee, S.J. Park,
Removal of triclosan from aqueous solution using thermally
treated rice husks, Desal. Water Treat., 202 (2020) 317–326.
- J. Lopez-Morales, O. Perales-Perez, F. Roman-Velazquez,
Sorption of triclosan onto tyre crumb rubber, Adsorpt. Sci.
Technol., 30 (2012) 831–845.
- J. Ma, J. Zhao, Z. Zhu, L. Li, F. Yu, Effect of microplastic size
on the adsorption behavior and mechanism of triclosan
on polyvinyl chloride, Environ. Pollut., 254 (2019) 113104,
doi: 10.1016/j.envpol.2019.113104.
- N.K.E.M. Khori, T. Hadibarata, M.S. Elshikh, A.A. Al-Ghamdi,
Z.Y. Salmiati, Z. Yusop, Triclosan removal by adsorption using
activated carbon derived from waste biomass: isotherms and
kinetic studies, J. Chin. Chem. Soc., 37 (2018) 1–9.
- L.A. González-Fernández, N.A. Medellín-Castillo, R. Ocampo-Pérez, H. Hernández-Mendoza,
M.S. Berber-Mendoza,
C. Aldama-Aguilera, Equilibrium and kinetic modelling of
triclosan adsorption
on single-walled carbon nanotubes,
J. Environ. Chem. Eng., 9 (2021) 106382, doi:10.1016/j.jece.2021.106382.
- S. Santaeufemia, J. Abalde, E. Torres, Eco-friendly rapid removal
of triclosan from seawater using biomass of a microalgal
species: kinetic and equilibrium studies, J. Hazard. Mater.,
369 (2019) 674–683.
- F. Wang, X. Lu, W. Peng, Y. Deng, T. Zhang, Y. Hu, X.Y. Li,
Sorption behavior of bisphenol A and triclosan by graphene:
comparison with activated carbon, ACS. Omega, 2 (2017)
5378–5384.
- R. Gao, X. Kong, F. Su, X. He, L. Chen, Y. Zhang, Synthesis
and evaluation of molecularly imprinted core–shell carbon
nanotubes for the determination of triclosan in environmental
water samples, J. Chromatogr. A, 1217 (2010) 8095–8102.
- I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption isotherms,
kinetics, thermodynamics and desorption studies of
2,4,6-trichlorophenol on oil palm empty fruit bunch-based
activated carbon, J. Hazard. Mater., 164 (2009) 473–482.
- S. Senthilkumaar, P. Kalaamani, K. Porkodi, P.R. Varadarajan,
C.V. Subburaam, Adsorption of dissolved reactive red dye
from aqueous phase onto activated carbon prepared from
agricultural waste, Bioresour. Technol., 97 (2006) 1618–1625.
- Q. Li, Q.Y. Yue, Y. Su, B.Y. Gao, H.J. Sun, Equilibrium,
thermodynamics and process design to minimize adsorbent
amount for the adsorption of acid dyes onto cationic polymerloaded
bentonite, Chem. Eng. J., 158 (2010) 489–497.
- A.A. Inyinbor, F.A. Adekola, G.A. Olatunji, Kinetics, isotherms
and thermodynamic modeling of liquid phase adsorption
of rhodamine B dye onto Raphia hookerie fruit epicarp, Water
Resour. Ind., 15 (2016) 14–27.
- M. Alkan, Ö. Demirbaş, M. Doğan, Adsorption kinetics and
thermodynamics of an anionic dye onto sepiolite, Microporous
Mesoporous Mater., 101 (2007) 388–396.
- T. Wang, X. Jin, Z. Chen, M. Megharaj, R. Naidu, Simultaneous
removal of Pb(II) and Cr(III) by magnetite nanoparticles using
various synthesis conditions, J. Ind. Eng. Chem., 20 (2014)
3543–3549.
- Z. Feng, H. Chen, H. Li, R. Yuan, F. Wang, Z. Chen, B. Zhou,
Preparation, characterization, and application of magnetic
activated carbon for treatment of biologically treated
papermaking wastewater, Sci. Total Environ., 713 (2020) 136423,
doi: 10.1016/j.scitotenv.2019.136423.
- A. Ikhlaq, F. Javed, A. Niaz, H.M.S. Munir, F. Qi, Combined UV
catalytic ozonation process on iron loaded peanut shell ash for
the removal of methylene blue from aqueous solution, Desal.
Water Treat., 200 (2020) 231–240.
- J.Y. Song, B.N. Bhadra, S.H. Jhung, Contribution of H-bond
in adsorptive removal of pharmaceutical and personal
care products from water using oxidized activated carbon,
Microporous Mesoporous Mater., 243 (2017) 221–228.
- S.L. Wang, Y.M. Tzou, Y.H. Lu, G. Sheng, Removal of
3-chlorophenol from water using rice-straw-based carbon,
J. Hazard. Mater., 147 (2007) 313–318.
- M.M.S. Saif, N.S. Kumar, M.N.V. Prasad, Binding of cadmium
to Strychnos potatorum seed proteins in aqueous solution:
adsorption kinetics and relevance to water purification, Colloids
Surf., B, 94 (2012) 73–79.
- M. Ghorbani, H. Eisazadeh, A.A. Ghoreyshi, Removal of zinc
ions from aqueous solution using polyaniline nanocomposite
coated on rice husk, Iran. J. Energy Environ., 3 (2012) 83–88.
- M.A. Fard, A. Vosoogh, B. Barkdoll, B. Aminzadeh, Using
polymer coated nanoparticles for adsorption of micropollutants
from water, Colloids Surf., A, 531 (2017) 189–197.