References
- B. Liu, X. Liu, J. Liu, C. Feng, Z. Li, C. Li, Y. Gong, L. Pan, S. Xu,
C.Q. Sun, Efficient charge separation between
UiO-66 and
ZnIn2S4 flowerlike 3D microspheres for photoelectronchemical
properties, Appl. Catal., B, 226 (2018) 234–241.
- T. Ni, Z. Yang, H. Zhang, L. Zhou, W. Guo, L. Pan, Z. Yang,
K. Chang, C. Ge, D. Liu, Peroxymonosulfate activation by
Co3O4/SnO2 for efficient degradation of ofloxacin under visible
light, J. Colloid Interface Sci., 615 (2022) 650–662.
- D. Liu, C. Li, J. Ge, C. Zhao, Q. Zhao, F. Zhang, T. Ni, W. Wu,
3D interconnected g-C3N4 hybridized with 2D Ti3C2 MXene
nanosheets for enhancing visible light photocatalytic hydrogen
evolution and dye contaminant elimination, Appl. Surf. Sci.,
579 (2022) 152180, doi: 10.1016/j.apsusc.2021.152180.
- D. Liu, H. Li, R. Gao, Q. Zhao, Z. Yang, X. Gao, Z. Wang,
F. Zhang, W. Wu, Enhanced visible light photoelectrocatalytic
degradation of tetracycline hydrochloride by I and P co-doped
TiO2 photoelectrode, J. Hazard. Mater., 406 (2021) 124309,
doi: 10.1016/j.jhazmat.2020.124309.
- D. Liu, C. Li, C. Zhao, Q. Zhao, T. Niu, L. Pan, P. Xu, F. Zhang,
W. Wu, T. Ni, Facile synthesis of three-dimensional hollow
porous carbon doped polymeric carbon nitride with highly
efficient photocatalytic performance, Chem. Eng. J., 438 (2022)
135623, doi: 10.1016/j.cej.2022.135623.
- Y. Liu, C. Xu, Y. Xie, L. Yang, Y. Ling, L. Chen, Au–Cu nanoalloy/TiO2/MoS2 ternary hybrid with enhanced photocatalytic
hydrogen production, J. Alloys Compd., 820 (2020) 153440,
doi:10.1016/j.jallcom.2019.153440.
- S. Jadhav, R. Navarro-Mendoza, P. Lozano-Sotomayor,
I.R. Galindo-Esquivel, O. Serrano,
J.M. Peralta-Hernández,
Enhanced photocatalytic activity of TiO2 modified with GaI
toward environmental application, Inorg. Chem., 59 (2020)
1315–1322.
- C.Y. Kuo, C.H. Wu, H.Y. Lin, Synergistic effects of TiO2 and
Cu2O in UV/TiO2/zeolite-based systems on photodegradation
of bisphenol A, Environ. Technol. (United Kingdom), 35 (2014)
1851–1857.
- S. Gomez, C.L. Marchena, L. Pizzio, L. Pierella, Preparation and
characterization of TiO2/HZSM-11 zeolite for photodegradation
of dichlorvos in aqueous solution, J. Hazard. Mater., 258–259
(2013) 19–26.
- T. Aguilar, J. Navas, R. Alcántara, C. Fernández-Lorenzo,
J.J. Gallardo, G. Blanco, J. Martín-Calleja, A route for the
synthesis of Cu-doped TiO2 nanoparticles with a very low
bandgap, Chem. Phys. Lett., 571 (2013) 49–53.
- Y. Zhao, J. Li, L. Wang, Y. Hao, L. Yang, P. He, J. Xue, Preparation
and characterization of sulfated TiO2/zeolite composite catalysts
with enhanced photocatalytic activity, Nano, 13 (2018) 1850117,
doi:10.1142/S1793292018501175.
- W. Donphai, T. Kamegawa, M. Chareonpanich, K. Nueangnoraj,
H. Nishihara, T. Kyotani, H. Yamashita, Photocatalytic
performance of TiO2–zeolite templated carbon composites in
organic contaminant degradation, Phys. Chem. Chem. Phys.,
16 (2014) 25004–25007.
- X. Liu, Y. Liu, S. Lu, W. Guo, B. Xi, Performance and mechanism
into TiO2/zeolite composites for sulfadiazine adsorption and
photodegradation, Chem. Eng. J., 350 (2018) 131–147.
- F. Liu, X. Ma, H. Li, Y. Wang, P. Cui, M. Guo, H. Yaxin, W. Lu,
S. Zhou, M. Yu, Dilute sulfonic acid post functionalized metal
organic framework as a heterogeneous acid catalyst for
esterification to produce biodiesel, Fuel, 266 (2020) 117149,
doi: 10.1016/j.fuel.2020.117149.
- Z. Xiong, Z. Xu, Y. Li, L. Dong, J. Wang, J. Zhao, X. Chen,
Y. Zhao, H. Zhao, J. Zhang, Incorporating highly dispersed
and stable Cu+ into TiO2 lattice for enhanced photocatalytic
CO2 reduction with water, Appl. Surf. Sci., 507 (2020) 145095,
doi: 10.1016/j.apsusc.2019.145095.
- K. Guesh, Á. Mayoral, Y. Chebude, M.J. López-Muñoz,
C. Márquez-Álvarez, I. Diaz, Effect of thermal treatment on the
photocatalytic behavior of TiO2 supported on zeolites, New J.
Chem., 42 (2018) 12001–12007.
- M. Castañeda-Juárez, V. Martínez-Miranda, P.T. Almazánsánchez,
Synthesis of TiO2 catalysts doped with Cu, Fe, and Fe/Cu supported on clinoptilolite zeolite by an electrochemicalthermal
method for the degradation of diclofenac by
heterogeneous photocatalysis, J. Photochem. Photobiol., A,
380 (2019) 111834, doi:10.1016/j.jphotochem.2019.04.045.
- N. Setthaya, P. Chindaprasirt, S. Yin, K. Pimraksa, TiO2-zeolite
photocatalysts made of metakaolin and rice husk ash for
remoal
of methylene blue dye, Powder Technol., 313 (2017)
417–426.
- J. Hu, J. Xie, W. Jia, S. Zhang, S. Wang, K. Wang, Y. Cao,
Interesting molecule adsorption strategy induced energy
band tuning: boosts 43 times photocatalytic water splitting
ability for commercial TiO2, Appl. Catal., B, 268 (2020) 118753,
doi: 10.1016/j.apcatb.2020.118753.
- C. Wang, Y. Li, Preparation and characterisation of S doped
TiO2/natural zeolite with photocatalytic and adsorption
activities, Mater. Technol., 29 (2014) 204–209.
- C. Wang, H. Shi, Y. Li, Synthesis and characterization of natural
zeolite supported Cr-doped TiO2 photocatalysts, Appl. Surf.
Sci., 258 (2012) 4328–4333.
- H. Lee, H.S. Jang, N.Y. Kim, J.B. Joo, Cu-doped TiO2 hollow
nanostructures for the enhanced photocatalysis under visible
light conditions, J. Ind. Eng. Chem., 99 (2021) 352–363.
- N. Chaouati, A. Soualah, M. Chater, Adsorption of phenol
from aqueous solution onto zeolites Y modified by silylation,
C.R. Chim., 16 (2013) 222–228.
- W. Zhang, X. Xiao, L. Zheng, C. Wan, Fabrication of TiO2/MoS2@zeolite photocatalyst and its photocatalytic activity for
degradation of methyl orange under visible light, Appl. Surf.
Sci., 358 (2015) 468–478.
- C.S. Uyguner Demirel, N.C. Birben, M. Bekbolet, A comprehensive
review on the use of second generation TiO2
photocatalysts: microorganism inactivation, Chemosphere,
211 (2018) 420–448.
- A. Taheri Najafabadi, F. Taghipour, Cobalt precursor role
in the photocatalytic activity of the
zeolite-supported TiO2-based photocatalysts under visible light: a promising tool
toward zeolite-based
core-shell photocatalysis, J. Photochem.
Photobiol., A, 248 (2012) 1–7.
- V. Durgakumari, M. Subrahmanyam, K. Subba Rao,
A. Ratnamala, M. Noorjahan, K. Tanaka, An easy and efficient
use of TiO2 supported HZSM-5 and TiO2+HZSM-5 zeolite
combinate in the photodegradation of aqueous phenol and
p-chlorophenol, Appl. Catal., A, 234 (2002) 155–165.
- P. Górska, A. Zaleska, J. Hupka, Photodegradation of phenol
by UV/TiO2 and Vis/N,C-TiO2 processes: comparative
mechanistic and kinetic studies, Sep. Purif. Technol., 68 (2009)
90–96.
- H. Jamil, I.M. Dildar, U. Ilyas, J.Z. Hashmi, S. Shaukat,
M.N. Sarwar, M. Khaleeq-ur-Rahman, Microstructural and
optical study of polycrystalline manganese oxide films using
Kubelka–Munk function, Thin Solid Films, 732 (2021) 138796,
doi: 10.1016/j.tsf.2021.138796.
- N.T. Nolan, M.K. Seery, S.C. Pillai, Spectroscopic investigation
of the anatase -to-rutile transformation
of sol-gel-synthesized
TiO2 photocatalysts, J. Phys. Chem. C, 113 (2009) 16151–16157.
- N.D. Johari, Z.M. Rosli, J.M. Juoi, S.A. Yazid, Comparison on
the TiO2 crystalline phases deposited via dip and spin coating
using green sol–gel route, J. Mater. Res. Technol., 8 (2019)
2350–2358.
- H. Abdelouahab Reddam, R. Elmail, S. Cerro Lloria, G. Monrós
Tomás, Z. Abdelouahab Reddam,
F. Coloma-Pascual, Synthesis
of Fe, Mn and Cu modified TiO2 photocatalysts for photodegradation
of
Orange II, Bol. Soc. Esp. Ceram. Vidrio, 59 (2020) 138–148.
- L. Zhang, B. Han, P. Cheng, Y.H. Hu, In-situ FTIR-DRS
investigation on shallow trap state of Cu-doped TiO2
photocatalyst, Catal. Today, 341 (2020) 21–25.
- K.M. Alvarez, J. Alvarado, B.S. Soto, M.A. Hernandez, Synthesis
of TiO2 nanoparticles and TiO2-zeolite composites and study
of optical properties and structural characterization, Optik
(Stuttg), 169 (2018) 137–146.
- Z. Hai, C. Zhu, J. Huang, H. Liu, J. Chen, Controllable synthesis
of CuO nanowires and Cu2O crystals with shape evolution via
γ-irradiation, Inorg. Chem., 49 (2010) 7217–7219.
- S. Zhu, X. Chen, Z. Li, X. Ye, Y. Liu, Y. Chen, L. Yang, M. Chen,
D. Zhang, G. Li, H. Li, Cooperation between inside and outside
of TiO2: lattice Cu+ accelerates carrier migration to the surface of
metal copper for photocatalytic CO2 reduction, Appl. Catal., B,
264 (2020) 118515, doi: 10.1016/j.apcatb.2019.118515.
- M.R.F. dos Santos, A.M.G. Pedrosa, M.J.B. de Souza, Oxidative
desulfurization of thiophene on TiO2/ZSM-12 zeolite, Mater.
Res., 19 (2016) 24–30.
- X. Liu, Y. Liu, S. Lu, W. Guo, B. Xi, Performance and mechanism
into TiO2/zeolite composites for sulfadiazine adsorption and
photodegradation, Chem. Eng. J., 350 (2018) 131–147.
- X.J. Liu, L.K. Pan, Z. Sun, Y.M. Chen, X.X. Yang, L.W. Yang,
Z.F. Zhou, C.Q. Sun, Strain engineering of the elasticity and the
Raman shift of nanostructured TiO2, J. Appl. Phys., 110 (2011)
044322, doi: 10.1063/1.3626044.
- G.N. Shao, S.M. Imran, S.J. Jeon, M. Engole, N. Abbas,
M. Salman Haider, S.J. Kang, H.T. Kim, Sol–gel synthesis of
photoactive zirconia–titania from metal salts and investigation
of their photocatalytic properties in the photodegradation of
methylene blue, Powder Technol., 258 (2014) 99–109.
- G. Colón, M. Maicu, M.C. Hidalgo, J.A. Navío, Cu-doped TiO2
systems with improved photocatalytic activity, Appl. Catal., B,
67 (2006) 41–51.
- G. Zhang, A. Song, Y. Duan, S. Zheng, Enhanced photocatalytic
activity of TiO2/zeolite composite for abatement of pollutants,
Microporous Mesoporous Mater., 255 (2018) 61–68.
- V.M. Daskalaki, M. Antoniadou, G. Li Puma, D.I. Kondarides,
P. Lianos, Solar light-responsive Pt/CdS/TiO2 photocatalysts
for hydrogen production and simultaneous degradation of
inorganic or organic sacrificial agents in wastewater, Environ.
Sci. Technol., 44 (2010) 7200–7205.
- Y. Wang, J. Chen, X. Lei, Y. Ren, Preparation of microporous
zeolites TiO2/SSZ-13 composite photocatalyst and its
photocatalytic reactivity, Microporous Mesoporous Mater.,
250 (2017) 9–17.
- N.S. Kovalevskiy, M.N. Lyulyukin, D.S. Selishchev, D.V. Kozlov,
Analysis of air photocatalytic purification using a total hazard
index: effect of the composite TiO2/zeolite photocatalyst,
J. Hazard. Mater., 358 (2018) 302–309.