References

  1. B. Liu, X. Liu, J. Liu, C. Feng, Z. Li, C. Li, Y. Gong, L. Pan, S. Xu, C.Q. Sun, Efficient charge separation between
    UiO-66 and ZnIn2S4 flowerlike 3D microspheres for photoelectronchemical properties, Appl. Catal., B, 226 (2018) 234–241.
  2. T. Ni, Z. Yang, H. Zhang, L. Zhou, W. Guo, L. Pan, Z. Yang, K. Chang, C. Ge, D. Liu, Peroxymonosulfate activation by Co3O4/SnO2 for efficient degradation of ofloxacin under visible light, J. Colloid Interface Sci., 615 (2022) 650–662.
  3. D. Liu, C. Li, J. Ge, C. Zhao, Q. Zhao, F. Zhang, T. Ni, W. Wu, 3D interconnected g-C3N4 hybridized with 2D Ti3C2 MXene nanosheets for enhancing visible light photocatalytic hydrogen evolution and dye contaminant elimination, Appl. Surf. Sci., 579 (2022) 152180, doi: 10.1016/j.apsusc.2021.152180.
  4. D. Liu, H. Li, R. Gao, Q. Zhao, Z. Yang, X. Gao, Z. Wang, F. Zhang, W. Wu, Enhanced visible light photoelectrocatalytic degradation of tetracycline hydrochloride by I and P co-doped TiO2 photoelectrode, J. Hazard. Mater., 406 (2021) 124309, doi: 10.1016/j.jhazmat.2020.124309.
  5. D. Liu, C. Li, C. Zhao, Q. Zhao, T. Niu, L. Pan, P. Xu, F. Zhang, W. Wu, T. Ni, Facile synthesis of three-dimensional hollow porous carbon doped polymeric carbon nitride with highly efficient photocatalytic performance, Chem. Eng. J., 438 (2022) 135623, doi: 10.1016/j.cej.2022.135623.
  6. Y. Liu, C. Xu, Y. Xie, L. Yang, Y. Ling, L. Chen, Au–Cu nanoalloy/TiO2/MoS2 ternary hybrid with enhanced photocatalytic hydrogen production, J. Alloys Compd., 820 (2020) 153440, doi:10.1016/j.jallcom.2019.153440.
  7. S. Jadhav, R. Navarro-Mendoza, P. Lozano-Sotomayor, I.R. Galindo-Esquivel, O. Serrano,
    J.M. Peralta-Hernández, Enhanced photocatalytic activity of TiO2 modified with GaI toward environmental application, Inorg. Chem., 59 (2020) 1315–1322.
  8. C.Y. Kuo, C.H. Wu, H.Y. Lin, Synergistic effects of TiO2 and Cu2O in UV/TiO2/zeolite-based systems on photodegradation of bisphenol A, Environ. Technol. (United Kingdom), 35 (2014) 1851–1857.
  9. S. Gomez, C.L. Marchena, L. Pizzio, L. Pierella, Preparation and characterization of TiO2/HZSM-11 zeolite for photodegradation of dichlorvos in aqueous solution, J. Hazard. Mater., 258–259 (2013) 19–26.
  10. T. Aguilar, J. Navas, R. Alcántara, C. Fernández-Lorenzo, J.J. Gallardo, G. Blanco, J. Martín-Calleja, A route for the synthesis of Cu-doped TiO2 nanoparticles with a very low bandgap, Chem. Phys. Lett., 571 (2013) 49–53.
  11. Y. Zhao, J. Li, L. Wang, Y. Hao, L. Yang, P. He, J. Xue, Preparation and characterization of sulfated TiO2/zeolite composite catalysts with enhanced photocatalytic activity, Nano, 13 (2018) 1850117, doi:10.1142/S1793292018501175.
  12. W. Donphai, T. Kamegawa, M. Chareonpanich, K. Nueangnoraj, H. Nishihara, T. Kyotani, H. Yamashita, Photocatalytic performance of TiO2–zeolite templated carbon composites in organic contaminant degradation, Phys. Chem. Chem. Phys., 16 (2014) 25004–25007.
  13. X. Liu, Y. Liu, S. Lu, W. Guo, B. Xi, Performance and mechanism into TiO2/zeolite composites for sulfadiazine adsorption and photodegradation, Chem. Eng. J., 350 (2018) 131–147.
  14. F. Liu, X. Ma, H. Li, Y. Wang, P. Cui, M. Guo, H. Yaxin, W. Lu, S. Zhou, M. Yu, Dilute sulfonic acid post functionalized metal organic framework as a heterogeneous acid catalyst for esterification to produce biodiesel, Fuel, 266 (2020) 117149, doi: 10.1016/j.fuel.2020.117149.
  15. Z. Xiong, Z. Xu, Y. Li, L. Dong, J. Wang, J. Zhao, X. Chen, Y. Zhao, H. Zhao, J. Zhang, Incorporating highly dispersed and stable Cu+ into TiO2 lattice for enhanced photocatalytic CO2 reduction with water, Appl. Surf. Sci., 507 (2020) 145095, doi: 10.1016/j.apsusc.2019.145095.
  16. K. Guesh, Á. Mayoral, Y. Chebude, M.J. López-Muñoz, C. Márquez-Álvarez, I. Diaz, Effect of thermal treatment on the photocatalytic behavior of TiO2 supported on zeolites, New J. Chem., 42 (2018) 12001–12007.
  17. M. Castañeda-Juárez, V. Martínez-Miranda, P.T. Almazánsánchez, Synthesis of TiO2 catalysts doped with Cu, Fe, and Fe/Cu supported on clinoptilolite zeolite by an electrochemicalthermal method for the degradation of diclofenac by heterogeneous photocatalysis, J. Photochem. Photobiol., A, 380 (2019) 111834, doi:10.1016/j.jphotochem.2019.04.045.
  18. N. Setthaya, P. Chindaprasirt, S. Yin, K. Pimraksa, TiO2-zeolite photocatalysts made of metakaolin and rice husk ash for remoal of methylene blue dye, Powder Technol., 313 (2017) 417–426.
  19. J. Hu, J. Xie, W. Jia, S. Zhang, S. Wang, K. Wang, Y. Cao, Interesting molecule adsorption strategy induced energy band tuning: boosts 43 times photocatalytic water splitting ability for commercial TiO2, Appl. Catal., B, 268 (2020) 118753, doi: 10.1016/j.apcatb.2020.118753.
  20. C. Wang, Y. Li, Preparation and characterisation of S doped TiO2/natural zeolite with photocatalytic and adsorption activities, Mater. Technol., 29 (2014) 204–209.
  21. C. Wang, H. Shi, Y. Li, Synthesis and characterization of natural zeolite supported Cr-doped TiO2 photocatalysts, Appl. Surf. Sci., 258 (2012) 4328–4333.
  22. H. Lee, H.S. Jang, N.Y. Kim, J.B. Joo, Cu-doped TiO2 hollow nanostructures for the enhanced photocatalysis under visible light conditions, J. Ind. Eng. Chem., 99 (2021) 352–363.
  23. N. Chaouati, A. Soualah, M. Chater, Adsorption of phenol from aqueous solution onto zeolites Y modified by silylation, C.R. Chim., 16 (2013) 222–228.
  24. W. Zhang, X. Xiao, L. Zheng, C. Wan, Fabrication of TiO2/MoS2@zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light, Appl. Surf. Sci., 358 (2015) 468–478.
  25. C.S. Uyguner Demirel, N.C. Birben, M. Bekbolet, A comprehensive review on the use of second generation TiO2 photocatalysts: microorganism inactivation, Chemosphere, 211 (2018) 420–448.
  26. A. Taheri Najafabadi, F. Taghipour, Cobalt precursor role in the photocatalytic activity of the
    zeolite-supported TiO2-based photocatalysts under visible light: a promising tool toward zeolite-based
    core-shell photocatalysis, J. Photochem. Photobiol., A, 248 (2012) 1–7.
  27. V. Durgakumari, M. Subrahmanyam, K. Subba Rao, A. Ratnamala, M. Noorjahan, K. Tanaka, An easy and efficient use of TiO2 supported HZSM-5 and TiO2+HZSM-5 zeolite combinate in the photodegradation of aqueous phenol and p-chlorophenol, Appl. Catal., A, 234 (2002) 155–165.
  28. P. Górska, A. Zaleska, J. Hupka, Photodegradation of phenol by UV/TiO2 and Vis/N,C-TiO2 processes: comparative mechanistic and kinetic studies, Sep. Purif. Technol., 68 (2009) 90–96.
  29. H. Jamil, I.M. Dildar, U. Ilyas, J.Z. Hashmi, S. Shaukat, M.N. Sarwar, M. Khaleeq-ur-Rahman, Microstructural and optical study of polycrystalline manganese oxide films using Kubelka–Munk function, Thin Solid Films, 732 (2021) 138796, doi: 10.1016/j.tsf.2021.138796.
  30. N.T. Nolan, M.K. Seery, S.C. Pillai, Spectroscopic investigation of the anatase -to-rutile transformation
    of sol-gel-synthesized TiO2 photocatalysts, J. Phys. Chem. C, 113 (2009) 16151–16157.
  31. N.D. Johari, Z.M. Rosli, J.M. Juoi, S.A. Yazid, Comparison on the TiO2 crystalline phases deposited via dip and spin coating using green sol–gel route, J. Mater. Res. Technol., 8 (2019) 2350–2358.
  32. H. Abdelouahab Reddam, R. Elmail, S. Cerro Lloria, G. Monrós Tomás, Z. Abdelouahab Reddam,
    F. Coloma-Pascual, Synthesis of Fe, Mn and Cu modified TiO2 photocatalysts for photodegradation of
    Orange II, Bol. Soc. Esp. Ceram. Vidrio, 59 (2020) 138–148.
  33. L. Zhang, B. Han, P. Cheng, Y.H. Hu, In-situ FTIR-DRS investigation on shallow trap state of Cu-doped TiO2 photocatalyst, Catal. Today, 341 (2020) 21–25.
  34. K.M. Alvarez, J. Alvarado, B.S. Soto, M.A. Hernandez, Synthesis of TiO2 nanoparticles and TiO2-zeolite composites and study of optical properties and structural characterization, Optik (Stuttg), 169 (2018) 137–146.
  35. Z. Hai, C. Zhu, J. Huang, H. Liu, J. Chen, Controllable synthesis of CuO nanowires and Cu2O crystals with shape evolution via γ-irradiation, Inorg. Chem., 49 (2010) 7217–7219.
  36. S. Zhu, X. Chen, Z. Li, X. Ye, Y. Liu, Y. Chen, L. Yang, M. Chen, D. Zhang, G. Li, H. Li, Cooperation between inside and outside of TiO2: lattice Cu+ accelerates carrier migration to the surface of metal copper for photocatalytic CO2 reduction, Appl. Catal., B, 264 (2020) 118515, doi: 10.1016/j.apcatb.2019.118515.
  37. M.R.F. dos Santos, A.M.G. Pedrosa, M.J.B. de Souza, Oxidative desulfurization of thiophene on TiO2/ZSM-12 zeolite, Mater. Res., 19 (2016) 24–30.
  38. X. Liu, Y. Liu, S. Lu, W. Guo, B. Xi, Performance and mechanism into TiO2/zeolite composites for sulfadiazine adsorption and photodegradation, Chem. Eng. J., 350 (2018) 131–147.
  39. X.J. Liu, L.K. Pan, Z. Sun, Y.M. Chen, X.X. Yang, L.W. Yang, Z.F. Zhou, C.Q. Sun, Strain engineering of the elasticity and the Raman shift of nanostructured TiO2, J. Appl. Phys., 110 (2011) 044322, doi: 10.1063/1.3626044.
  40. G.N. Shao, S.M. Imran, S.J. Jeon, M. Engole, N. Abbas, M. Salman Haider, S.J. Kang, H.T. Kim, Sol–gel synthesis of photoactive zirconia–titania from metal salts and investigation of their photocatalytic properties in the photodegradation of methylene blue, Powder Technol., 258 (2014) 99–109.
  41. G. Colón, M. Maicu, M.C. Hidalgo, J.A. Navío, Cu-doped TiO2 systems with improved photocatalytic activity, Appl. Catal., B, 67 (2006) 41–51.
  42. G. Zhang, A. Song, Y. Duan, S. Zheng, Enhanced photocatalytic activity of TiO2/zeolite composite for abatement of pollutants, Microporous Mesoporous Mater., 255 (2018) 61–68.
  43. V.M. Daskalaki, M. Antoniadou, G. Li Puma, D.I. Kondarides, P. Lianos, Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater, Environ. Sci. Technol., 44 (2010) 7200–7205.
  44. Y. Wang, J. Chen, X. Lei, Y. Ren, Preparation of microporous zeolites TiO2/SSZ-13 composite photocatalyst and its photocatalytic reactivity, Microporous Mesoporous Mater., 250 (2017) 9–17.
  45. N.S. Kovalevskiy, M.N. Lyulyukin, D.S. Selishchev, D.V. Kozlov, Analysis of air photocatalytic purification using a total hazard index: effect of the composite TiO2/zeolite photocatalyst, J. Hazard. Mater., 358 (2018) 302–309.