References
- C. Manyi-Loh, S. Mamphweli, E. Meyer, A. Okoh, Antibiotic use
in agriculture and its consequential resistance in environmental
sources: potential public health implications, Molecules,
23 (2018) 795, doi:10.3390/molecules23040795.
- Y. Li, F. Zhang, Z. Cai, J. Zhang, D. Chu, W. Gong, Y. Dongmei,
F. Fu, Y. Gao, S. Wang, Treatment of piggery wastewater by
ozone purification technology study on antibiotic residues,
Heilongjiang Anim. Husb. Veter. Med., 7 (2017) 184–187.
- N. Jendrzejewska, E. Karwowska, The influence of antibiotics
on wastewater treatment processes and the development of
antibiotic-resistant bacteria, Water Sci. Technol., 77 (2018)
2320–2326.
- X. Wen, Y. Jia, J. Li, Degradation of tetracycline and
oxytetracycline by crude lignin peroxidase prepared from
Phanerochaete chrysosporium – a white rot fungus, Chemosphere,
75 (2009) 1003–1007.
- J. Yang, Y. Lin, X. Yang, T.B. Ng, X. Ye, J. Lin, Degradation
of tetracycline by immobilized laccase and the proposed
transformation pathway, J. Hazard. Mater., 322 (2017) 525–531.
- I. Chopra, M. Robert, Tetracycline antibiotics: mode of action,
applications, molecular biology, and epidemiology of bacterial
resistance, Microbiol. Mol. Biol. Rev., 65 (2001) 232–260.
- X. Yu, R. Yu, B. Xue, J. Liao, W. Zhu, S. Tian, Adsorption of
oxytetracycline from aquaculture wastewater by modified
zeolites: kinetics, isotherm, and thermodynamics, Desal. Water
Treat., 202 (2020) 219–231.
- A. Esrafili, M. Tahergorabi, M. Malakootian, M. Kerman,
M. Gholami, M. Farzadkia, Synergistic effects of catalytic and
photocatalytic ozonation on four sulfonamides antibiotics
degradation in an aquatic solution, Desal. Water Treat.,
182 (2020) 260–276.
- M. Tahergorabi, A. Esrafili, M. Kerman, M. Gholami,
M. Farzadkia, Degradation of four antibiotics from aqueous
solution by ozonation: intermediates identification and reaction
pathways, Desal. Water Treat., 139 (2019) 277–287.
- S.C. Chuo, N. Abd-Talib, S.H. Mohd-Setapar, H. Hassan,
H.M. Nasir, A. Ahmad, D. Lokhat, G. Md. Ashraf, Reverse
micelle extraction of antibiotics using an eco-friendly sophorolipids
biosurfactant, Sci. Rep., 8 (2018) 1–13.
- S.C. Chuo, A. Ahmad, S.H. Mohd-Setapar, S.F. Mohamed,
M. Rafatullah, Utilization of green sophorolipids biosurfactant
in reverse micelle extraction of antibiotics: kinetic and mass
transfer studies, J. Mol. Liq., 276 (2019) 225–232.
- S.C. Chuo, A. Ahmad, S.H. Mohd-Setapar, A. Ripin, Reverse
micelle extraction-an alternative for recovering antibiotics, Der.
Pharma. Chemica., 6 (2014) 37–44.
- A. Ahmad, A. Khatoon, S.H. Mohd-Setapar, S.N. Mohamad-
Aziz, M.A.A. Zaini, C.S. Chuong, Effect of parameter on forward
extraction of amoxicillin by using mixed reverse micelles, Res. J.
Biotechnol., 8 (2013) 10–14.
- D. Becker, S. Varela, S. Rodriguez-Mozaz, R. Schoevaart,
D. Barcelo, M. Cazes, M.P. Belleville, J. Sanchez-Marcano,
Removal of antibiotics in wastewater by enzymatic treatment
with fungal laccase-degradation of compounds does not always
eliminate toxicity, Bioresour. Technol., 219 (2016) 500–509.
- A.M. Mayer, R.C. Staples, Laccase: new functions for old
enzyme, Phytochemistry, 60 (2002) 551–565.
- F. Wang, L. Xu, L. Zhao, Z. Ding, H. Ma, N. Terry, Fungal laccase
production from lignocellulosic agricultural wastes by solidstate
fermentation: a review, Microorganisms, 7 (2019) 665,
doi:10.3390/microorganisms7120665.
- U. Divedi, P. Singh, V.P. Pandey, A. Kumar, Structure-function
relationship among bacterial, fungal and plant laccases, J. Mol.
Catal. B: Enzym., 68 (2011) 117–128.
- S. Zeng, J. Zhao, L. Xia, Simultaneous production of laccase and
degradation of bisphenol A with Trametes versicolor cultivated
on agricultural wastes, Bioprocess Biocatalyst Eng., 40 (2017)
1237–1245.
- M.Á. Fernández-Fernández, D. Molde, Recent developments
and applications of immobilized laccase, Biotechnol. Adv.,
31 (2013) 1808–1825.
- N. Hatvani, I. Mécs, Production of laccase and manganese
peroxidase by Lentinus edodes on malt-containing by-product of
the brewing process, Process Biochem., 37 (2001) 491–496.
- J. Goa, A micro Biuret method for protein determination,
Scandinavian J. Clin. Lab. Invest., 5 (1953) 218–222.
- N. Jafari, S. Rezaie, R. Rezaie, H. Dilmaghani, M.R. Koshayand,
M.A. Faramarzi, Improved production and characterization
of a highly stable laccase from the halophilic bacterium
Chromohalobacter salexigens for the efficient delignification
of almond shell bio-waste, Int. J. Biol. Macromol., 105 (2017)
489–498.
- F.B. Ahmad, Z. Zhang, O.S.W. Doherty, M.I. O’Hara, The
prospect of microbial oil production and applications from oil
palm biomass, Biochem. Eng. J., 143 (2019) 9–23.
- L. Migliore, M. Fiori, A. Spadoni, E. Galli, Biodegradation
of oxytetracycline by Pleurotus ostreatus mycelium: a
mycoremediation technique, J. Hazard. Mater., 215–216 (2012)
227–232.
- E. Baltierra-Trejo, L. Márquez-Benavides, J.M. Sánchez-Yáñez,
Inconsistencies and ambiguities in calculating enzyme activity:
the case of laccase, J. Microbiol. Methods, 119 (2015) 126–131.
- W.N.I.W. Mohd Zawawi, A.F. Mansor, N.S. Othman,
N.A. Mohidem, N.A.N.N. Malek, H. Mat, Synthesis and
characterization of immobilized white-rot fungus Trametes
versicolor in sol–gel ceramics, J. Sol-Gel Sci. Technol., 77 (2016)
28–38.
- H. Bermek, I. Gülseren, K. Li, H. Jung, C. Tamerler, The effect
of fungal morphology on ligninolytic enzyme production by a
recently isolated wood-degrading fungus Trichophyton rubrum LSK-27, World J. Microbiol. Biotechnol., 20 (2004) 345–349.
- M.T. Cambria, S. Ragusa, V. Calabrese, A. Cambria, Enhanced
laccase production in white-rot fungus Rigidoporus lignosus by
the addition of selected phenolic and aromatic compounds,
Appl. Biochem. Biotechnol., 163 (2011) 415–422.
- M. Ahmad, L. Pataczek, T.H. Hilger, Z.A. Zahir, A. Hussain,
F. Rasche, R. Schafleitner, S. Solberg, Perspectives of microbial
inoculation for sustainable development and environmental
management, Front. Microbiol., 9 (2018) 2992, doi: 10.3389/fmicb.2018.02992.
- D. Schlosser, R. Grey, W. Fritsche, Patterns of ligninolytic
enzymes in Trametes versicolor. Distribution of extra-and
intracellular enzyme activities during cultivation on glucose,
wheat straw and beech wood, Appl. Microbiol. Biotechnol.,
47 (1997) 412–418.
- A. Hatakka, Lignin-modifying enzymes from selected white-rot
fungi: production and role from in lignin degradation, FEMS
Microbiol. Rev., 13 (1994) 125–135.
- K. Brijwani, A. Rigdon, P.V. Vadlani, Fungal laccases: production,
function, and applications in food processing, Enzyme Resour.,
2010 (2010) 149748, doi: 10.4061/2010/149748.
- C.F. Thurston, The structure and function of fungal laccases,
Microbiology, 140 (1994) 19–26.
- S. Li, B. Tang, Y. Liu, A. Chen, W. Tang, S. Wei, High level
production and characterization of laccase from a newly isolated
fungus Trametes sp. LS-10C, Biocatal. Agric. Biotechnol.,
8 (2016) 278–285.
- S. Sadhasivam, S. Savitha, K. Swaminathan, F.H. Lin,
Production, purification and characterization of mid-redox
potential laccase from a newly isolated Trichoderma harzianum
WL1, Process Biochem., 43 (2008) 736–742.
- R. Kumar, J. Kaur, S. Jain, A. Kumar, Optimization of laccase
production from Aspergillus flavus by design of experiment
technique: partial purification and characterization, J. Genet.
Eng. Biotechnol., 14 (2016) 125–131.
- A. Lisov, O. Belova, A. Zavarzina, A. Konstantinov,
A. Leontievsky, The role of laccase from zygomycetous fungus
Mortierella elasson in humic acids degradation, Agronomy,
11 (2021) 2169, doi: 10.3390/agronomy11112169.
- A. Aguiar, P.B. Souza-Cruz, A. Ferraz, Oxalic acid, Fe3+
reduction activity and oxidative enzymes detected in culture
extracts recovered from Pinus taeda wood chips biotreated by
Ceriporiopsis subvermisphora, Enzyme Microb. Technol., 38 (2006)
873–878.
- M. Makela, S. Galkin, A. Hatakka, T. Lundell, Production of
organic acids and oxalate decarboxylase in
lignin-degrading
white rot fungi, Enzyme Microb. Technol., 30 (2002) 542–549.
- A.M.T. Josep, M.M. Mario, C. Cayo, E. Ethel, B. Damià,
S. Montserrat, C. Glòria, V. Teresa, E.R.R. Carlos, Degradation
of selected agrochemicals by the white rot fungus Trametes
versicolor, Sci. Total Environ., 500–501 (2014) 235–242.
- A. Aylin, C.N. Mohamed, S. Mika, Optimized removal of
oxytetracycline and cadmium from contaminated waters using
chemically-activated and pyrolyzed biochars from forest and
wood-processing residues, Bioresour. Technol., 239 (2017) 28–36.
- P. Regmi, J.L.G. Moscoso, S. Kumar, X. Cao, J. Mao, G. Schafran,
Removal of copper and cadmium from aqueous solution using
switchgrass biochar produced via hydrothermal carbonization
process, J. Environ. Manage., 109 (2012) 61–69.
- C. Galhaup, H. Wagner, B. Hinterstoisser, D. Haltrich, Increased
production of laccase by the wood-degrading basidiomycete
Trametes pubescens, Enzyme Microb. Technol., 30 (2002) 529–536.