References
- M. Elimelech, W.A. Phillip, The future of seawater desalination:
energy, technology, and the environment, Science, 333 (2011)
712–717.
- E. Jones, M. Qadir, M.T.H. van Vliet, V. Smakhtin, S.-m. Kang,
The state of desalination and brine production: a global outlook,
Sci. Total Environ., 657 (2019) 1343–1356.
- K. Minas, E. Karunakaran, T. Bond, C. Gandy, A. Honsbein,
M. Madsen, J. Amezaga, A. Amtmann, M.R. Templeton,
C.A. Biggs, L. Lawton, Biodesalination: an emerging technology
for targeted removal of Na+ and Cl– from seawater by
cyanobacteria, Desal. Water Treat., 55 (2015) 2647–2668.
- J. Wei, L. Gao, G. Shen, X. Yang, M. Li, The role of adsorption in
microalgae biological desalination: salt removal from brackish
water using Scenedesmus obliquus, Desalination, 493 (2020) 1–7,
doi:10.1016/j.desal.2020.114616.
- L. Gao, X. Zhang, L. Fan, S. Gray, M. Li, Algae-based approach for
desalination: an emerging energy-passive and environmentally
friendly desalination technology, ACS Sustainable Chem. Eng.,
9 (2021) 8663–8678.
- X. Ji, J. Cheng, D. Gong, X. Zhao, Y. Qi, Y. Su, W. Ma, The effect
of NaCl stress on photosynthetic efficiency and lipid production
in freshwater microalga—Scenedesmus obliquus XJ002, Sci. Total
Environ., 633 (2018) 593–599.
- L. Xia, J. Rong, H. Yang, Q. He, D. Zhang, C. Hu, NaCl as
an effective inducer for lipid accumulation in freshwater
microalgae Desmodesmus abundans, Bioresour. Technol.,
161 (2014) 402–409.
- R. Kakarla, J.W. Choi, J.H. Yun, B.H. Kim, J. Heo, S. Lee, D.H. Cho,
R. Ramanan, H.S. Kim, Application of high-salinity stress for
enhancing the lipid productivity of Chlorella sorokiniana HS1 in
a two-phase process, J. Microbiol., 56 (2018) 56–64.
- L. Gao, G. Liu, A. Zamyadi, Q. Wang, M. Li, Life-cycle cost
analysis of a hybrid algae-based biological desalination – low
pressure reverse osmosis system, Water Res., 195 (2021) 1–15,
doi:10.1016/j.watres.2021.116957.
- X. Gan, G. Shen, B. Xin, M. Li, Simultaneous biological
desalination and lipid production by Scenedesmus obliquus cultured with brackish water, Desalination, 400 (2016) 1–6.
- A. Figler, V. B-Béres, D. Dobronoki, K. Márton, S.A. Nagy,
I. Bácsi, Salt tolerance and desalination abilities of nine
common green microalgae isolates, Water, 11 (2019) 2527,
doi: 10.3390/w11122527.
- Indrayani, Haslianti, Asriyana, Isolation and screening of
marine microalgae from kendari waters, southeast sulawesi,
Indonesia suitable for outdoor mass cultivation in hypersaline
media, AACL Bioflux, 11 (2018) 1445–1455.
- M. Olumana, W. Loiskandl, J. Fürst, Effect of Lake Basaka
Expansion on the Sustainability of Matahara SE in the
Awash River Basin, Ethiopia, Water, Sanitation and Hygiene:
Sustainable Development and Multisectoral Approaches, 34th
WEDC International Conference, Addis Ababa, Ethiopia, 2009,
pp. 1–9.
- M.O. Dinka, Analysing the temporal water quality dynamics
of Lake Basaka, Central Rift Valley of Ethiopia, IOP Conf. Ser.:
Earth Environ. Sci., 52 (2017) 1–7, doi: 1755-1315/52/1/012057.
- R. Nega, Microalgal diversity study of Lake Basaka, Metehara,
Ethiopia, J. Ecol. Nat. Resour., 5 (2021) 1–4, doi:10.23880/
jenr-16000256.
- H. Bischoff, H. Bold, Some soil algae from enchanted rock and
related algal species, Phycol. Stud., 44 (1963) 1–95.
- R.A. Andersen, Algal Culturing Techniques, Elsevier Academic
Press, Amsterdam, 2005, pp. 83–98.
- A.L. Abubakar, Effect of salinity on the growth parameters of
halotolerant microalgae, Dunaliella spp., Niger. J. Basic Appl.
Sci., 24 (2017) 85–91.
- R.S. Gour, V.K. Garlapati, A. Kant, Effect of salinity stress
on lipid accumulation in Scenedesmus sp. and Chlorella sp.:
feasibility of stepwise culturing, Curr. Microbiol., 77 (2020)
779–785.
- R. Devasya, A. Bassi, Investigation of phyco-remediation of road
salt run-off with marine microalgae Nannochloropsis gaditana,
Environ. Technol. (United Kingdom), 40 (2019) 553–563.
- E.G. Bligh, W.J. Dyer, A rapid method of total lipid extraction
and purification, Can. J. Biochem. Physiol., 37 (1959) 911–917.
- T.T. Mamo, Y.S. Mekonnen, Microwave-assisted biodiesel
production from microalgae, Scenedesmus species, using
goat bone–made nano-catalyst, Appl. Biochem. Biotechnol.,
190 (2020) 1147–1162.
- I. Pancha, K. Chokshi, R. Maurya, K. Trivedi, S.K. Patidar,
A. Ghosh, S. Mishra, Salinity induced oxidative stress enhanced
biofuel production potential of microalgae Scenedesmus sp.
CCNM 1077, Bioresour. Technol., 189 (2015) 341–348.
- P. Shetty, M.M. Gitau, G. Maróti, Salinity stress responses and
adaptation mechanisms in eukaryotic green microalgae, Cells,
8 (2019) 1–16, doi: 10.3390/cells8121657.
- M.-H. Park, C.-H. Park, Y.B. Sim, S.-J. Hwang, Response
of Scenedesmus quadricauda (Chlorophyceae) to salt stress
considering nutrient enrichment and intracellular proline
accumulation, Int. J. Environ. Res. Public Health, 17 (2020) 1–12,
doi: 10.3390/ijerph17103624.
- P. Kaewkannetra, P. Enmak, T. Chiu, The effect of CO2 and
salinity on the cultivation of Scenedesmus obliquus for biodiesel
production, Biotechnol. Bioprocess Eng., 17 (2012) 591–597.
- J.F. Sánchez, J.M. Fernández, F.G. Acién, A. Rueda, J. Pérez-
Parra, E. Molina, Influence of culture conditions on the
productivity and lutein content of the new strain Scenedesmus
almeriensis, Process Biochem., 43 (2008) 398–405.
- E.S. Salama, H.C. Kim, R.A.I. Abou-Shanab, M.K. Ji, Y.K. Oh,
S.H. Kim, B.H. Jeon, Biomass, lipid content, and fatty acid
composition of freshwater Chlamydomonas mexicana and
Scenedesmus obliquus grown under salt stress, Bioprocess
Biosyst. Eng., 36 (2013) 827–833.
- E. Sahle-Demessie, A. Aly Hassan, A. El Badawy, Biodesalination
of brackish and seawater using halophytic algae,
Desalination, 465 (2019) 104–113.
- C.Y. Chen, E.G. Durbin, Effects of pH on the growth and
carbon uptake of marine phytoplankton, Mar. Ecol. Prog. Ser.,
109 (1994) 83–94.
- J.M. Amezaga, A. Amtmann, C.A. Biggs, T. Bond, C.J. Gandy,
A. Honsbein, E. Karunakaran, L. Lawton,
M.A. Madsen,
K. Minas, M.R. Templeton, Biodesalination: a case study for
applications of photosynthetic bacteria in water treatment,
Plant Physiol., 164 (2014) 1661–1676.
- H. Gimmler, Primary sodium plasma membrane ATPases
in salt-tolerant algae: facts and fictions, J. Exp. Bot., 51 (2000)
1171–1178.
- Z. Yao, C. Ying, J. Lu, Q. Lai, K. Zhou, H. Wang, L. Chen,
Removal of K+, Na+, Ca2+, and Mg2+ from saline-alkaline water
using the microalga Scenedesmus obliquus, Chin. J. Oceanol.
Limnol., 31 (2013) 1248–1256.
- E. Sergany, F.A. Gh, E. Hosseiny, E. Nadi, The optimum algae
dose in water desalination by algae ponds, Int. Res. J. Adv. Eng.
Sci., 4 (2019) 152–154.
- M.T. Myint, W. Hussein, A. Ghassemi, Microalgal process
for treatment of high conductivity concentrates from inland
desalination, Desal. Water Treat., 57 (2016) 4313–4321.
- E. Sergany, A. Fadhli, E. Nadi, Temperature effect on
desalination by algae, Aust. J. Basic Appl. Sci., 8 (2014) 277–281.
- A.S. Azmi, F.S. Sani, F. Ali, M. Mel, P.A. Baru, Interactive effect
of temperature, ph and light intensity on biodesalination of
seawater by Synechococcus sp. PCC 7002 and on the cyanobacteria
growth, J. Adv. Res. Fluid Mech. Therm. Sci., 52 (2018) 85–93.
- S.P. Singh, P. Singh, Effect of CO2 concentration on algal growth:
a review, Renewable Sustainable Energy Rev., 38 (2014) 172–179.
- Y. Chisti, Biodiesel from microalgae beats bioethanol, Trends
Biotechnol., 26 (2008) 126–131.
- J.P. Cañavate, C. Fernández-Díaz, An appraisal of the variable
response of microalgal lipids to culture salinity, Rev. Aquacult.,
14 (2022) 192–212.
- H.Y. El-Kassas, Growth and fatty acid profile of the marine
microalga Picochlorum sp. grown under nutrient stress
conditions, Egypt. J. Aquat. Res., 39 (2013) 233–239.
- T.M. Mata, A.A. Martins, N.S. Caetano, Microalgae for biodiesel
production and other applications: a review, Renewable
Sustainable Energy Rev., 14 (2010) 217–232.
- H.M. Amaro, A.C. Guedes, F.X. Malcata, Advances and
perspectives in using microalgae to produce biodiesel, Appl.
Energy, 88 (2011) 3402–3410.
- X. Gan, G. Shen, B. Xin, M. Li, Simultaneous biological
desalination and lipid production by Scenedesmus obliquus cultured with brackish water, Desalination, 400 (2016) 1–6.
- R. Rippka, J. Deruelles, J.B. Waterbury, Generic assignments,
strain histories and properties of pure cultures of cyanobacteria,
J. Gen. Microbiol., 111 (1979) 1–61.
- Y. Bulut Mutlu, O. Işık, L. Uslu, K. Koç, Y. Durmaz, The effects
of nitrogen and phosphorus deficiencies and nitrite addition
on the lipid content of Chlorella vulgaris (Chlorophyceae), Afr. J.
Biotechnol., 10 (2011) 453–456.
- M. Cobos, J.D. Paredes, J.D. Maddox, G. Vargas-Arana,
L. Flores, C.P. Aguilar, J.L. Marapara, J.C. Castro, Isolation
and characterization of native microalgae from the Peruvian
Amazon with potential for biodiesel production, Energies,
10 (2017) 1–16.
- L. Gao, J. Zhang, G. Liu, Life cycle assessment for algae-based
desalination system, Desalination, 512 (2021) 1–9.
- M.H.A. El Nadi, F.A.G.H. El Sergany, O.M. El Hosseiny,
Desalination using algae ponds under nature Egyptian
conditions, J. Water Resour. Ocean Sci., 3 (2014) 69–73.
- E.M. Grima, F.G. Acie, A.R. Medina, Y. Chisti, Recovery of
microalgal biomass and metabolites: process options and
economics, Biotechnol. Adv., 20 (2003) 491–515.
- I. Rawat, R.R. Kumar, T. Mutanda, F. Bux, Biodiesel from
microalgae: a critical evaluation from laboratory to large scale
production, Appl. Energy, 103 (2013) 444–467.
- J. Wang, W. Liu, T. Liu, Biofilm based attached cultivation
technology for microalgal biorefineries — a review, Bioresour.
Technol., 244 (2017) 1245–1253.
- C.J. Zhu, Y.K. Lee, Determination of biomass dry weight of
marine microalgae, J. Appl. Phycol., 9 (1997) 189–194.
- J.T. Mary Leema, T. Persia Jothy, D. Magesh Peter, T.S. Kumar,
G. Dharani, A critical look into different salt removal treatments
for the production of high value pigments and fatty acids from
marine microalgae Chlorella vulgaris (NIOT-74), Biotechnol.
Rep., 30 (2021) e00627, doi: 10.1016/j.btre.2021.e00627.
- E.P. Knoshaug, T. Dong, R. Spiller, N. Nagle, P.T. Pienkos,
Pretreatment and fermentation of salt-water grown algal
biomass as a feedstock for biofuels and high-value biochemicals,
Algal Res., 36 (2018) 239–248.