References

  1. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712–717.
  2. E. Jones, M. Qadir, M.T.H. van Vliet, V. Smakhtin, S.-m. Kang, The state of desalination and brine production: a global outlook, Sci. Total Environ., 657 (2019) 1343–1356.
  3. K. Minas, E. Karunakaran, T. Bond, C. Gandy, A. Honsbein, M. Madsen, J. Amezaga, A. Amtmann, M.R. Templeton, C.A. Biggs, L. Lawton, Biodesalination: an emerging technology for targeted removal of Na+ and Cl from seawater by cyanobacteria, Desal. Water Treat., 55 (2015) 2647–2668.
  4. J. Wei, L. Gao, G. Shen, X. Yang, M. Li, The role of adsorption in microalgae biological desalination: salt removal from brackish water using Scenedesmus obliquus, Desalination, 493 (2020) 1–7, doi:10.1016/j.desal.2020.114616.
  5. L. Gao, X. Zhang, L. Fan, S. Gray, M. Li, Algae-based approach for desalination: an emerging energy-passive and environmentally friendly desalination technology, ACS Sustainable Chem. Eng., 9 (2021) 8663–8678.
  6. X. Ji, J. Cheng, D. Gong, X. Zhao, Y. Qi, Y. Su, W. Ma, The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga—Scenedesmus obliquus XJ002, Sci. Total Environ., 633 (2018) 593–599.
  7. L. Xia, J. Rong, H. Yang, Q. He, D. Zhang, C. Hu, NaCl as an effective inducer for lipid accumulation in freshwater microalgae Desmodesmus abundans, Bioresour. Technol., 161 (2014) 402–409.
  8. R. Kakarla, J.W. Choi, J.H. Yun, B.H. Kim, J. Heo, S. Lee, D.H. Cho, R. Ramanan, H.S. Kim, Application of high-salinity stress for enhancing the lipid productivity of Chlorella sorokiniana HS1 in a two-phase process, J. Microbiol., 56 (2018) 56–64.
  9. L. Gao, G. Liu, A. Zamyadi, Q. Wang, M. Li, Life-cycle cost analysis of a hybrid algae-based biological desalination – low pressure reverse osmosis system, Water Res., 195 (2021) 1–15, doi:10.1016/j.watres.2021.116957.
  10. X. Gan, G. Shen, B. Xin, M. Li, Simultaneous biological desalination and lipid production by Scenedesmus obliquus cultured with brackish water, Desalination, 400 (2016) 1–6.
  11. A. Figler, V. B-Béres, D. Dobronoki, K. Márton, S.A. Nagy, I. Bácsi, Salt tolerance and desalination abilities of nine common green microalgae isolates, Water, 11 (2019) 2527, doi: 10.3390/w11122527.
  12. Indrayani, Haslianti, Asriyana, Isolation and screening of marine microalgae from kendari waters, southeast sulawesi, Indonesia suitable for outdoor mass cultivation in hypersaline media, AACL Bioflux, 11 (2018) 1445–1455.
  13. M. Olumana, W. Loiskandl, J. Fürst, Effect of Lake Basaka Expansion on the Sustainability of Matahara SE in the Awash River Basin, Ethiopia, Water, Sanitation and Hygiene: Sustainable Development and Multisectoral Approaches, 34th WEDC International Conference, Addis Ababa, Ethiopia, 2009, pp. 1–9.
  14. M.O. Dinka, Analysing the temporal water quality dynamics of Lake Basaka, Central Rift Valley of Ethiopia, IOP Conf. Ser.: Earth Environ. Sci., 52 (2017) 1–7, doi: 1755-1315/52/1/012057.
  15. R. Nega, Microalgal diversity study of Lake Basaka, Metehara, Ethiopia, J. Ecol. Nat. Resour., 5 (2021) 1–4, doi:10.23880/ jenr-16000256.
  16. H. Bischoff, H. Bold, Some soil algae from enchanted rock and related algal species, Phycol. Stud., 44 (1963) 1–95.
  17. R.A. Andersen, Algal Culturing Techniques, Elsevier Academic Press, Amsterdam, 2005, pp. 83–98.
  18. A.L. Abubakar, Effect of salinity on the growth parameters of halotolerant microalgae, Dunaliella spp., Niger. J. Basic Appl. Sci., 24 (2017) 85–91.
  19. R.S. Gour, V.K. Garlapati, A. Kant, Effect of salinity stress on lipid accumulation in Scenedesmus sp. and Chlorella sp.: feasibility of stepwise culturing, Curr. Microbiol., 77 (2020) 779–785.
  20. R. Devasya, A. Bassi, Investigation of phyco-remediation of road salt run-off with marine microalgae Nannochloropsis gaditana, Environ. Technol. (United Kingdom), 40 (2019) 553–563.
  21. E.G. Bligh, W.J. Dyer, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37 (1959) 911–917.
  22. T.T. Mamo, Y.S. Mekonnen, Microwave-assisted biodiesel production from microalgae, Scenedesmus species, using goat bone–made nano-catalyst, Appl. Biochem. Biotechnol., 190 (2020) 1147–1162.
  23. I. Pancha, K. Chokshi, R. Maurya, K. Trivedi, S.K. Patidar, A. Ghosh, S. Mishra, Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077, Bioresour. Technol., 189 (2015) 341–348.
  24. P. Shetty, M.M. Gitau, G. Maróti, Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae, Cells, 8 (2019) 1–16, doi: 10.3390/cells8121657.
  25. M.-H. Park, C.-H. Park, Y.B. Sim, S.-J. Hwang, Response of Scenedesmus quadricauda (Chlorophyceae) to salt stress considering nutrient enrichment and intracellular proline accumulation, Int. J. Environ. Res. Public Health, 17 (2020) 1–12, doi: 10.3390/ijerph17103624.
  26. P. Kaewkannetra, P. Enmak, T. Chiu, The effect of CO2 and salinity on the cultivation of Scenedesmus obliquus for biodiesel production, Biotechnol. Bioprocess Eng., 17 (2012) 591–597.
  27. J.F. Sánchez, J.M. Fernández, F.G. Acién, A. Rueda, J. Pérez- Parra, E. Molina, Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis, Process Biochem., 43 (2008) 398–405.
  28. E.S. Salama, H.C. Kim, R.A.I. Abou-Shanab, M.K. Ji, Y.K. Oh, S.H. Kim, B.H. Jeon, Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress, Bioprocess Biosyst. Eng., 36 (2013) 827–833.
  29. E. Sahle-Demessie, A. Aly Hassan, A. El Badawy, Biodesalination of brackish and seawater using halophytic algae, Desalination, 465 (2019) 104–113.
  30. C.Y. Chen, E.G. Durbin, Effects of pH on the growth and carbon uptake of marine phytoplankton, Mar. Ecol. Prog. Ser., 109 (1994) 83–94.
  31. J.M. Amezaga, A. Amtmann, C.A. Biggs, T. Bond, C.J. Gandy, A. Honsbein, E. Karunakaran, L. Lawton,
    M.A. Madsen, K. Minas, M.R. Templeton, Biodesalination: a case study for applications of photosynthetic bacteria in water treatment, Plant Physiol., 164 (2014) 1661–1676.
  32. H. Gimmler, Primary sodium plasma membrane ATPases in salt-tolerant algae: facts and fictions, J. Exp. Bot., 51 (2000) 1171–1178.
  33. Z. Yao, C. Ying, J. Lu, Q. Lai, K. Zhou, H. Wang, L. Chen, Removal of K+, Na+, Ca2+, and Mg2+ from saline-alkaline water using the microalga Scenedesmus obliquus, Chin. J. Oceanol. Limnol., 31 (2013) 1248–1256.
  34. E. Sergany, F.A. Gh, E. Hosseiny, E. Nadi, The optimum algae dose in water desalination by algae ponds, Int. Res. J. Adv. Eng. Sci., 4 (2019) 152–154.
  35. M.T. Myint, W. Hussein, A. Ghassemi, Microalgal process for treatment of high conductivity concentrates from inland desalination, Desal. Water Treat., 57 (2016) 4313–4321.
  36. E. Sergany, A. Fadhli, E. Nadi, Temperature effect on desalination by algae, Aust. J. Basic Appl. Sci., 8 (2014) 277–281.
  37. A.S. Azmi, F.S. Sani, F. Ali, M. Mel, P.A. Baru, Interactive effect of temperature, ph and light intensity on biodesalination of seawater by Synechococcus sp. PCC 7002 and on the cyanobacteria growth, J. Adv. Res. Fluid Mech. Therm. Sci., 52 (2018) 85–93.
  38. S.P. Singh, P. Singh, Effect of CO2 concentration on algal growth: a review, Renewable Sustainable Energy Rev., 38 (2014) 172–179.
  39. Y. Chisti, Biodiesel from microalgae beats bioethanol, Trends Biotechnol., 26 (2008) 126–131.
  40. J.P. Cañavate, C. Fernández-Díaz, An appraisal of the variable response of microalgal lipids to culture salinity, Rev. Aquacult., 14 (2022) 192–212.
  41. H.Y. El-Kassas, Growth and fatty acid profile of the marine microalga Picochlorum sp. grown under nutrient stress conditions, Egypt. J. Aquat. Res., 39 (2013) 233–239.
  42. T.M. Mata, A.A. Martins, N.S. Caetano, Microalgae for biodiesel production and other applications: a review, Renewable Sustainable Energy Rev., 14 (2010) 217–232.
  43. H.M. Amaro, A.C. Guedes, F.X. Malcata, Advances and perspectives in using microalgae to produce biodiesel, Appl. Energy, 88 (2011) 3402–3410.
  44. X. Gan, G. Shen, B. Xin, M. Li, Simultaneous biological desalination and lipid production by Scenedesmus obliquus cultured with brackish water, Desalination, 400 (2016) 1–6.
  45. R. Rippka, J. Deruelles, J.B. Waterbury, Generic assignments, strain histories and properties of pure cultures of cyanobacteria, J. Gen. Microbiol., 111 (1979) 1–61.
  46. Y. Bulut Mutlu, O. Işık, L. Uslu, K. Koç, Y. Durmaz, The effects of nitrogen and phosphorus deficiencies and nitrite addition on the lipid content of Chlorella vulgaris (Chlorophyceae), Afr. J. Biotechnol., 10 (2011) 453–456.
  47. M. Cobos, J.D. Paredes, J.D. Maddox, G. Vargas-Arana, L. Flores, C.P. Aguilar, J.L. Marapara, J.C. Castro, Isolation and characterization of native microalgae from the Peruvian Amazon with potential for biodiesel production, Energies, 10 (2017) 1–16.
  48. L. Gao, J. Zhang, G. Liu, Life cycle assessment for algae-based desalination system, Desalination, 512 (2021) 1–9.
  49. M.H.A. El Nadi, F.A.G.H. El Sergany, O.M. El Hosseiny, Desalination using algae ponds under nature Egyptian conditions, J. Water Resour. Ocean Sci., 3 (2014) 69–73.
  50. E.M. Grima, F.G. Acie, A.R. Medina, Y. Chisti, Recovery of microalgal biomass and metabolites: process options and economics, Biotechnol. Adv., 20 (2003) 491–515.
  51. I. Rawat, R.R. Kumar, T. Mutanda, F. Bux, Biodiesel from microalgae: a critical evaluation from laboratory to large scale production, Appl. Energy, 103 (2013) 444–467.
  52. J. Wang, W. Liu, T. Liu, Biofilm based attached cultivation technology for microalgal biorefineries — a review, Bioresour. Technol., 244 (2017) 1245–1253.
  53. C.J. Zhu, Y.K. Lee, Determination of biomass dry weight of marine microalgae, J. Appl. Phycol., 9 (1997) 189–194.
  54. J.T. Mary Leema, T. Persia Jothy, D. Magesh Peter, T.S. Kumar, G. Dharani, A critical look into different salt removal treatments for the production of high value pigments and fatty acids from marine microalgae Chlorella vulgaris (NIOT-74), Biotechnol. Rep., 30 (2021) e00627, doi: 10.1016/j.btre.2021.e00627.
  55. E.P. Knoshaug, T. Dong, R. Spiller, N. Nagle, P.T. Pienkos, Pretreatment and fermentation of salt-water grown algal biomass as a feedstock for biofuels and high-value biochemicals, Algal Res., 36 (2018) 239–248.