References

  1. R. Shokoohi, H. Movahedian, A. Dargahi, A.J. Jafari, A. Parvaresh, Survey on efficiency of BF/AS integrated biological system in phenol removal of wastewater, Desal. Water Treat., 82 (2017) 315–321.
  2. K. Sharafi, M. Pirsaheb, T. Khosravi, A. Dargahi, M. Moradi, M.T. Savadpour, Fluctuation of organic substances, solids, protozoan cysts, and parasite egg at different units of a wastewater integrated stabilization pond (full scale treatment plant): a case study, Iran, Desal. Water Treat., 57 (2016) 4913–4919.
  3. J. Rivera-Utrilla, R. Ocampo-Pérez, J.D. Méndez-Díaz, M. Sánchez-Polo, Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies–a review, J. Environ. Manage., 109 (2012) 164–178.
  4. D. Güven, O. Hanhan, E.C. Aksoy, G. Insel, E. Çokgör, Impact of paint shop decanter effluents on biological treatability of automotive industry wastewater, J. Hazard. Mater., 330 (2017) 61–67.
  5. R. Shokoohi, A.J. Jafari, A. Dargahi, Z. Torkshavand, Study of the efficiency of bio-filter and activated sludge (BF/AS) combined process in phenol removal from aqueous solution: determination of removing model according to response surface methodology (RSM), Desal. Water Treat., 77 (2017) 256–263.
  6. A. Almasi, M. Mahmoudi, M. Mohammadi, A. Dargahi, H. Biglari, Optimizing biological treatment of petroleum industry wastewater in a facultative stabilization pond for simultaneous removal of carbon and phenol, Toxin Rev., 40 (2021) 189–197.
  7. A. Dargahi, R. Shokoohi, G. Asgari, A. Ansari, D. Nematollahi, M.R. Samarghandi, Moving-bed biofilm reactor combined with three-dimensional electrochemical pretreatment (MBBR–3DE) for 2, 4-D herbicide treatment: application for real wastewater, improvement of biodegradability, RSC Adv., 11 (2021) 9608–9620.
  8. A. Azizi, A. Dargahi, A. Almasi, Biological removal of diazinon in a moving bed biofilm reactor–process optimization with central composite design, Toxin Rev., 40 (2021) 1242–1252.
  9. S.Z. Asghari, A. Seid-mohammadi, G. Roshanaei, F. Arbabpoori, S. Panahi, Mental health status among Iranian Medical University Students: a cross-sectional study, J. Educ. Community Health, 9 (2022) 111–117.
  10. A. Dargahi, H.R. Barzoki, M. Vosoughi, S.A. Mokhtari, Enhanced electrocatalytic degradation of 2,4-Dinitrophenol (2,4-DNP) in three-dimensional sono-electrochemical (3D/ SEC) process equipped with Fe/SBA-15 nanocomposite particle electrodes: degradation pathway and application for real wastewater, Arabian J. Chem., 15 (2022) 103801, doi: 10.1016/j. arabjc.2022.103801.
  11. J. Lv, M. Fu, J. Gan, Y. Cao, F. Xiao, Study on the treatment of tempering lubricant wastewater in steel industry by anaerobic/aerobic process, J. Cleaner Prod., 355 (2022) 131754, doi: 10.1016/j.jclepro.2022.131754.
  12. A. Almasi, A. Dargahi, A. Amrane, M. Fazlzadeh, M. Soltanian, A. Hashemian, Effect of molasses addition as biodegradable material on phenol removal under anaerobic conditions, Environ. Eng. Manage. J. (EEMJ), 17 (2018) 1475–1482.
  13. A.A. Putra, T. Watari, S. Maki, M. Hatamoto, T. Yamaguchi, Anaerobic baffled reactor to treat fishmeal wastewater with high organic content, Environ. Technol. Innovation, 17 (2020) 100586, doi:10.1016/j.eti.2019.100586.
  14. J. Li, S. Tabassum, Synergism of hydrolytic acidification and sulfate reducing bacteria for acid production and desulfurization in the anaerobic baffled reactor: high sulfate sewage wastewater treatment, Chem. Eng. J., 444 (2022) 136611, doi: 10.1016/j.cej.2022.136611.
  15. A. Dargahi, M. Mohammadi, F. Amirian, A. Karami, A. Almasi, Phenol removal from oil refinery wastewater using anaerobic stabilization pond modeling and process optimization using response surface methodology (RSM), Desal. Water Treat., 87 (2017) 199–208.
  16. S. Zhao, H. Li, J. Guo, Y. Zhang, J. Zhao, Y. Song, C. Lu, Y. Han, D. Zhang, Y. Hou, Formation of anaerobic granular sludge (AnGS) to treat high-strength perchlorate wastewater via anaerobic baffled reactor (ABR) system: electron transfer characteristic, bacterial community and positive feedback mechanism, Sci. Total Environ., 828 (2022) 154531, doi: 10.1016/j.scitotenv.2022.154531.
  17. J. Liu, N. Zang, L. Gao, X. Liu, H. Tian, P. Yue, T. Li, A modified packed anaerobic baffled reactor based on phase separation for the treatment of decentralized wastewater: performance and microbial communities, Biochem. Eng. J., 183 (2022) 108455, doi: 10.1016/j.bej.2022.108455.
  18. L. Zhang, Q. Ban, J. Li, T. Wang, Simultaneous production of hydrogen-methane and spatial community succession in an anaerobic baffled reactor treating corn starch processing wastewater, Chemosphere, 300 (2022) 134503, doi: 10.1016/j. chemosphere.2022.134503.
  19. B. Yang, H. Xu, J. Wang, D. Yan, Q. Zhong, H. Yu, Performance evaluation of anaerobic baffled reactor (ABR) for treating alkali-decrement wastewater of polyester fabrics at incremental organic loading rates, Water Sci. Technol., 77 (2018) 2445–2453.
  20. G. Munhoven, Mathematics of the total alkalinity–pH equation–pathway to robust and universal solution algorithms: the SolveSAPHE package v1. 0.1, Geosci. Model Dev., 6 (2013) 1367–1388.
  21. M. Hmissi, J. Harmand, V. Alcaraz-Gonzalez, H. Shayeb, Evaluation of alkalinity spatial distribution in an up-flow fixed bed anaerobic digester, Water Sci. Technol., 77 (2018) 948–959.
  22. L. Xu, F. Dong, J. Yang, W. Liu, L. Zhu, Q. He, X. Wang, H. Li, X. Wang, Electricity generation and acid and alkaline recovery from pickled waters/wastewaters through anaerobic digestion, bipolar membrane electrodialysis and solid oxide fuel cell hybrid system, Energy Convers. Manage., 251 (2022) 114973, doi:10.1016/j.enconman.2021.114973.
  23. A. Gholipour, A.I. Stefanakis, A full-scale anaerobic baffled reactor and hybrid constructed wetland for university dormitory wastewater treatment and reuse in an arid and warm climate, Ecol. Eng., 170 (2021) 106360, doi: 10.1016/j. ecoleng.2021.106360.
  24. X. Liu, J. Chen, D.-H. Lin, S.G. Pavlostathis, Long-term evaluation of the effect of peracetic acid solution on anaerobic wastewater treatment: process performance and microbial community structure, Chem. Eng. J., 436 (2022) 135262, doi: 10.1016/j.cej.2022.135262.
  25. C. Shin, S.H. Tilmans, F. Chen, C.S. Criddle, Anaerobic membrane bioreactor model for design and prediction of domestic wastewater treatment process performance, Chem. Eng. J., 426 (2021) 131912, doi:10.1016/j.cej.2021.131912.
  26. J.N. Meegoda, B. Li, K. Patel, L.B. Wang, A review of the processes, parameters, and optimization of anaerobic digestion, Int. J. Environ. Res. Public Health, 15 (2018) 2224, doi: 10.3390/ijerph15102224.
  27. S. Samani Majd, M.A. Abdoli, A. Karbassi, H.R. Pourzamani, M. Rezaee, Effect of physical and chemical operating parameters on anaerobic digestion of manure and biogas production: a review, J. Environ. Health Sustainable Dev., 2 (2017) 235–247.
  28. V. Alcaraz-González, F.A. Fregoso-Sanchez, H.O. Mendez-Acosta, V. Gonzalez-Alvarez, Robust regulation of alkalinity in highly uncertain continuous anaerobic digestion processes, CLEAN–Soil, Air, Water, 41 (2013) 1157–1164.
  29. D. Petruzzelli, M. Petrella, G. Boghetich, P. Calabrese, V. Petruzzelli, A. Petrella, Neutralization of acidic wastewater by the use of waste limestone from the marble industry. mechanistic aspects and mass transfer phenomena of the acid − base reaction at the liquid − solid interface, Ind. Eng. Chem. Res., 48 (2009) 399–405.
  30. L. Pietrelli, S. Ferro, M. Vocciante, Raw materials recovery from spent hydrochloric acid-based galvanizing wastewater, Chem. Eng. J., 341 (2018) 539–546.
  31. A. Eaton, L.S. Clesceri, E.W. Rice, A.E. Greenberg, M. Franson, APHA: Standard Methods for the Examination of Water and Wastewater, Centennial Edition, APHA, AWWA, WEF, Washington, D.C., 2005.
  32. E.M. Kispergher, C.A. D’Aquino, L.C. da Costa, T.C. de Mello, R. Weinschutz, A.L. Mathias, Effect of organic load and alkalinity on dairy wastewater biomethanation, Engenharia Agricola, 37 (2017) 820–827.
  33. M. Malakootian, M. Barikbin, M. Nabavian, Investigation of sulfate concentration influence on anaerobic lagoon performance: Birjand wastewater treatment plant: a case study, J. Birjand Univ. Med. Sci., 23 (2016) 110–118.
  34. K. Chinabhark, S. Benjakul, T. Prodpran, Effect of pH on the properties of protein-based film from bigeye snapper (Priacanthus tayenus) surimi, Bioresour. Technol., 98 (2007) 221–225.
  35. N.L. Nemerow, Industrial Waste Treatment: Contemporary Practice and Vision for the Future, Elsevier, 2010.
  36. L. Szymoniak, D. Claveau-Mallet, M. Haddad, B. Barbeau, Application of magnesium oxide media for remineralization and removal of divalent metals in drinking water treatment: a review, Water, 14 (2022) 633, doi: 10.3390/w14040633.
  37. M. Saiedi, M. Karami, R. Nemati, Z. Soleymani, M. Mehralian, M. Moradi, Evaluation of chitosan and magnesium oxide nanoparticles efficiencies in removal of direct blue 71 and turbidity, J. Ilam Univ. Med. Sci., 27 (2019) 75–84.
  38. M. Budych-Gorzna, L. Jaroszynski, P. Oleskowicz-Popiel, Improved energy balance at a municipal wastewater treatment plant through waste activated sludge low-temperature alkaline pretreatment, J. Environ. Chem. Eng., 9 (2021) 106366, doi: 10.1016/j.jece.2021.106366.
  39. E. Ghahramani, M. Ghaneian, M.E. Abouei, Z. Ghavami, K. Ahmadi, M. Taghavi, S. Sadeghi, Evaluate the efficiency and effectiveness of magnesium oxide nanoparticles in removal of reactive yellow 3 dyestuffs from aqueous, J. North Khorasan Univ. Med. Sci., 8 (2016) 117–124.
  40. J. Tong, Y. Chen, Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment, Water Res., 43 (2009) 2969–2976.
  41. S. Kim, S.-D. Kim, S.Y. Sohn, Evaluation of the wastewater generated during alkaline pretreatment of biomass for feasibility of recycling and reusing, Renewable Energy, 155 (2020) 1156–1164.
  42. G. Asgari, M. Salari, Optimized synthesis of carbon-doped nano-MgO and its performance study in catalyzed ozonation of humic acid in aqueous solutions: modeling based on response surface methodology, J. Environ. Manage., 239 (2019) 198–210.