References
- O. Faroon, N. Roney, J. Taylor, A. Ashizawa, M.H. Lumpkin,
D.J. Plewak, Acrolein environmental levels and potential for
human exposure, Toxicol. Ind. Health, 24 (2008) 543–564.
- J. Namieśnik, A. Rabajczyk, The speciation and physicochemical
forms of metals in surface waters and sediments,
Chem. Speciation Bioavailability, 22 (2010) 1–24.
- J.Y. Lim, N.M. Mubarak, E.C. Abdullah, S. Nizamuddin,
M. Khalid, Inamuddin, Recent trends in the synthesis of graphene
and graphene oxide based nanomaterials for removal of
heavy metals — a review, J. Ind. Eng. Chem., 66 (2018) 29–44.
- G. Bhanjana, N. Dilbaghi, K.-H. Kim, S. Kumar, Carbon
nanotubes as sorbent material for removal of cadmium, J. Mol.
Liq., 242 (2017) 966–970.
- J. Acharya, U. Kumar, B.C. Meikap, Thermodynamic
characterization of adsorption of lead(II) ions on activated
carbon developed from tamarind wood from aqueous solution,
S. Afr. J. Chem. Eng., 18 (2013) 70–76.
- M.K. Mondal, Removal of Pb(II) ions from aqueous solution
using activated tea waste: adsorption on a fixed-bed column,
J. Environ. Manage., 90 (2009) 3266–3271.
- S. Yang, J. Hu, C. Chen, D. Shao, X. Wang, Mutual effects of
Pb(II) and humic acid adsorption on multiwalled carbon
nanotubes/polyacrylamide composites from aqueous solutions,
Environ. Sci. Technol., 45 (2011) 3621–3627.
- M. Mom, M. Purenovi, A. Boji, A. Zarubica, M. Ran, Removal
of lead(II) ions from aqueous solutions by adsorption onto pine
cone activated carbon, Desalination, 276 (2011) 53–59.
- S. Huang, S. Song, R. Zhang, T. Wen, X. Wang, S. Yu, W. Song,
T. Hayat, A. Alsaedi, X. Wang, Construction of layered double
hydroxides/hollow carbon microsphere composites and its
applications for mutual removal of Pb(II) and humic acid
from aqueous solutions, ACS Sustainable Chem. Eng., 5 (2017)
11268–11279.
- B. Singha, S.K. Das, Removal of Pb(II) ions from aqueous
solution and industrial effluent using natural biosorbents,
Environ. Sci. Pollut. Res., 19 (2012) 2212–2226.
- M. Arbabi, M., Hemati, S., Amiri, Removal of lead ions from
industrial wastewater: a review of removal methods, Int. J.
Epidemiol. Res., 2 (2015) 105–109.
- M. Özacar, İ. Ayhan Şengil, H. Türkmenler, Equilibrium and
kinetic data, and adsorption mechanism for adsorption of lead
onto valonia tannin resin, Chem. Eng. J., 143 (2008) 32–42.
- J. Namieśnik, A.R. Jczyk, Speciation analysis of chromium in environmental
samples, Environ. Sci. Technol., 3389 (2012) 327–377.
- J. Wang, P. Wang, H. Wang, J. Dong, W. Chen, X. Wang, S. Wang,
T. Hayat, A. Alsaedi, X. Wang, Preparation of molybdenum
disulfide coated Mg/Al layered double hydroxide composites
for efficient removal of chromium(VI), ACS Sustainable Chem.
Eng., 5 (2017) 7165–7174.
- C. He, Z. Yang, J. Ding, Y. Chen, X. Tong, Y. Li, Effective removal of
Cr(VI) from aqueous solution by
3-aminopropyltriethoxysilanefunctionalized
graphene oxide, Colloids Surf., A, 520 (2017)
448–458.
- F. Teshale, R. Karthikeyan, O. Sahu, Synthesized bioadsorbent
from fish scale for chromium(III) removal, Micron, 130 (2020)
102817, doi: 10.1016/j.micron.2019.102817.
- T. Saheed Kazeem, Treatment of aqueous selenocyanate anions
using electrocoagulation, Int. J. Electrochem. Sci., 14 (2019)
10538–10564.
- M.S. Vohra, Selenocyanate (SeCN–) contaminated wastewater
treatment using TiO2 photocatalysis: SeCN– complex destruction,
intermediates formation, and removal of selenium species,
Fresenius Environ. Bull., 24 (2015) 1108–1118.
- B.A. Labaran, M.S. Vohra, Photocatalytic removal of selenite
and selenate species: effect of EDTA and other process variables,
Environ. Technol. (United Kingdom), 35 (2014) 1091–1100.
- B.A. Labaran, M.S. Vohra, Competitive adsorption of selenite
[Se(IV)], selenate [Se(VI)] and selenocyanate [SeCN–] species
onto TiO2: Experimental findings and surface complexation
modelling, Desal. Water Treat., 124 (2018) 267–278.
- T. Mohammed, T.S. Kazeem, M.H. Essa, B.A. Labaran,
M.S. Vohra, Comparative study on electrochemical treatment of
arsenite: effects of process parameters, sludge characterization
and kinetics, Arabian J. Sci. Eng., 45 (2020) 3799–3815.
- M.S. Vohra, M.S. Al-Suwaiyan, M.H. Essa, M.M.I. Chowdhury,
M.M. Rahman, B.A. Labaran, Application of solar photocatalysis
and solar photo-Fenton processes for the removal of some
critical charged pollutants: mineralization trends and formation
of reaction intermediates, Arabian J. Sci. Eng., 41 (2016)
3877–3887.
- M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review
of graphene, Chem. Rev., 110 (2010) 132–145.
- A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite
oxide revisited, J. Phys. Chem. B, 102 (1998) 4477–4482.
- G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Few-layered graphene
oxide nanosheets as superior sorbents for heavy metal ion
pollution management, Environ. Sci. Technol., 45 (2011)
10454–10462.
- L.P. Lingamdinne, Y.L. Choi, I.S. Kim, J.K. Yang, J.R. Koduru,
Y.Y. Chang, Preparation and characterization of porous
reduced graphene oxide based inverse spinel nickel ferrite
nanocomposite for adsorption removal of radionuclides,
J. Hazard. Mater., 326 (2017) 145–156.
- L.P. Lingamdinne, J.R. Koduru, R.R. Karri, A comprehensive
review of applications of magnetic graphene oxide based
nanocomposites for sustainable water purification, J. Environ.
Manage., 231 (2019) 622–634.
- R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann,
A. Gagor, B. Feist, R. Wrzalik, Adsorption of divalent metal ions
from aqueous solutions using graphene oxide, Dalton Trans.,
42 (2013) 5682–5689.
- C. Hontoria-Lucas, A.J. López-Peinado, J. de D. López-González, M.L. Rojas-Cervantes, R.M. Martín-Aranda, Study
of oxygen-containing groups in a series of graphite oxides:
physical and chemical characterization, Carbon N. Y., 33 (1995)
1585–1592.
- R. Sitko, B. Zawisza, E. Malicka, Modification of carbon
nanotubes for preconcentration, separation and determination
of trace-metal ions, TrAC, Trends Anal. Chem., 37 (2012)
22–31.
- S. Kaushal, N. Kaur, M. Kaur, P.P. Singh, Dual-responsive
pectin/graphene oxide (Pc/GO) nano-composite as an efficient
adsorbent for Cr(III) ions and photocatalyst for degradation
of organic dyes in waste water, J. Photochem. Photobiol., A,
403 (2020) 112841, doi: 10.1016/j.jphotochem.2020.112841.
- A.O. Salawudeen, B.S. Tawabini, A.M. Al-shaibani, A. Saleh,
Poly(2-hydroxyethyl methacrylate) grafted graphene oxide for
cadmium removal from water with interaction mechanisms,
Environ. Nanotechnol. Monit. Manage., 13 (2020) 100288,
doi: 10.1016/j.enmm.2020.100288.
- S.Z.N. Ahmad, W.N.W. Salleh, N.H. Ismail, N. Rosman,
N.A.M. Razali, R. Hamdan, A.F. Ismail, Zeolitic imidazolate
framework-L incorporated graphene oxide hybrid for cadmium
removal, Mater. Today:. Proc., 42 (2021) 8–14.
- Y. Zhang, W. Peng, L. Xia, S. Song, Adsorption of Cd(II) at the
interface of water and graphene oxide prepared from flaky
graphite and amorphous graphite, J. Environ. Chem. Eng.,
5 (2017) 4157–4164.
- K.C. Lai, L.Y. Lee, B.Y.Z. Hiew, S. Thangalazhy-Gopakumar,
S. Gan, Facile synthesis of xanthan biopolymer integrated 3D
hierarchical graphene oxide/titanium dioxide composite for
adsorptive lead removal in wastewater, Bioresour. Technol.,
309 (2020) 123296, doi: 10.1016/j.biortech.2020.123296.
- Y. Chen, W. Jiang, C. Zhao, Z. Liu, Y. Liang, Facile modification
of graphene oxide by humic acid for enhancing hexavalent
chromium photoreduction, J. Environ. Chem. Eng., 9 (2021)
104759, doi:10.1016/j.jece.2020.104759.
- J.H. Lee, J.-A. Park, H.-G. Kim, J.-H. Lee, S.-H. Cho, K. Choi,
K.-W. Jung, S.Y. Lee, J.-W. Choi, Most suitable amino silane
molecules for surface functionalization of graphene oxide
toward hexavalent chromium adsorption, Chemosphere,
251 (2020) 126387, doi: 10.1016/j.chemosphere.2020.126387.
- P.L. Narayana, L.P. Lingamdinne, R.R. Karri, S. Devanesan,
M.S. AlSalhi, N.S. Reddy, Y.-Y. Chang, J. Reddy Koduru,
Predictive capability evaluation and optimization of Pb(II)
removal by reduced graphene oxide-based inverse spinel
nickel ferrite nanocomposite, Environ. Res., 204 (2022) 112029,
doi:10.1016/j.envres.2021.112029.
- L.P. Lingamdinne, J.R. Koduru, Y.Y. Chang, R.R. Karri, Process
optimization and adsorption modeling of Pb(II) on nickel
ferrite-reduced graphene oxide nano-composite, J. Mol. Liq.,
250 (2018) 202–211.
- M. Li, Q. Hu, H. Shan, W. Yu, Z.-X. Xu, Fabrication of copper
phthalocyanine/reduced graphene oxide nanocomposites
for efficient photocatalytic reduction of hexavalent chromium,
Chemosphere, 263 (2021) 128250, doi: 10.1016/j.chemosphere.
2020.128250.
- X. Li, H. Zhou, W. Wu, S. Wei, Y. Xu, Y. Kuang, Studies of heavy
metal ion adsorption on chitosan/sulfydryl-functionalized
graphene oxide composites, J. Colloid Interface Sci., 448 (2015)
389–397.
- C. Bai, L. Wang, Z. Zhu, Adsorption of Cr(III) and Pb(II) by
graphene oxide/alginate hydrogel membrane: characterization,
adsorption kinetics, isotherm and thermodynamics studies, Int.
J. Biol. Macromol., 147 (2020) 898–910.
- M.E. Mahmoud, M.M. Osman, H. Abdel-Aal, G.M. Nabil,
Microwave-assisted adsorption of Cr(VI), Cd(II) and Pb(II) in
presence of magnetic graphene oxide-covalently functionalizedtryptophan
nanocomposite, J. Alloys Compd., 823 (2020)
153855, doi: 10.1016/j.jallcom.2020.153855.
- A. Sheikhmohammadi, S.M. Mohseni, B. Hashemzadeh,
E. Asgari, R. Sharafkhani, M. Sardar, M. Sarkhosh, M. Almasiane,
Fabrication of magnetic graphene oxide nanocomposites
functionalized with a novel chelating ligand for the removal of
Cr(VI): modeling, optimization, and adsorption studies, Desal.
Water Treat., 160 (2019) 297–307.
- A. Sheikhmohammadi, B. Hashemzadeh, A. Alinejad,
S.M. Mohseni, M. Sardar, R. Sharafkhani, M. Sarkhosh,
E. Asgari, A. Bay, Application of graphene oxide modified
with the phenopyridine
and 2-mercaptobenzothiazole for the
adsorption of Cr(VI) from wastewater: optimization, kinetic,
thermodynamic and equilibrium studies, J. Mol. Liq., 285 (2019)
586–597.
- A. Sheikhmohammadi, S.M. Mohseni, R. Khodadadi, M. Sardar,
M. Abtahi, S. Mahdavi, H. Keramati, Z. Dahaghin, S. Rezaei,
M. Almasian, M. Sarkhosh, M. Faraji, S. Nazaril, Application
of graphene oxide modified
with 8-hydroxyquinoline for the
adsorption of Cr(VI) from wastewater: optimization, kinetic,
thermodynamic and equilibrium studies, J. Mol. Liq., 233 (2017)
75–88.
- Y. Zhang, S. Zhang, T.S. Chung, Nanometric graphene oxide
framework membranes with enhanced heavy metal removal
via nanofiltration, Environ. Sci. Technol., 49 (2015) 10235–10242.
- Y. Zhang, S. Zhang, J. Gao, T.S. Chung, Layer-by-layer
construction of graphene oxide (GO) framework composite
membranes for highly efficient heavy metal removal, J. Membr.
Sci., 515 (2016) 230–237.
- H. Rasoulzadeh, A. Sheikhmohammadi, M. Abtahi, M. Alipour,
B. Roshan, Predicting the capability of diatomite magnano
composite boosted with polymer extracted from brown seaweeds
for the adsorption of cyanide from water solutions
using the response surface methodology: modelling and
optimisation, Int. J. Environ. Anal. Chem., (2021) 1–14,
doi: 10.1080/03067319.2021.1931160.
- E. Asgari, A. Sheikhmohammadi, J. Yeganeh, Application
of the Fe3O4-chitosan nano-adsorbent for the adsorption
of metronidazole from wastewater: optimization, kinetic,
thermodynamic and equilibrium studies, Int. J. Biol. Macromol.,
164 (2020) 694–706.
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun,
A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis
of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
- S.S. Ranade, P. Thiagarajan, Selection of a design for response
surface, IOP Conf. Ser.: Mater. Sci. Eng., 263 (2017) 022043.
- Q. Huang, H.J. Sun, T.J. Peng, The influence of temperature
and oxidation time on the preparation of graphite oxide, Adv.
Mater. Res., 366 (2011) 291–295.
- X.-j. Hu, Y.-g. Liu, H. Wang, A.-w. Chen, G.-m. Zeng,
S.-m. Liu, Y.-m. Guo, X. Hu, T.-t. Li, Y.-q. Wang, L. Zhou,
S.-h. Liu, Removal of Cu(II) ions from aqueous solution using
sulfonated magnetic graphene oxide composite, Sep. Purif.
Technol., 108 (2013) 189–195.
- P. Liu, Y. Huang, L. Wang, A facile synthesis of reduced
graphene oxide with Zn powder under acidic condition, Mater.
Lett., 91 (2013) 125–128.
- L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz,
B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, Graphene oxide
and reduced graphene oxide studied by the XRD, TEM and
electron spectroscopy methods,
J. Electron. Spectrosc. Relat.
Phenom., 195 (2014) 145–154.
- S.-M. Hong, S.H. Kim, K.B. Lee, Adsorption of carbon dioxide
on 3-aminopropyl-triethoxysilane modified graphite oxide,
Energy Fuels, 27 (2013) 3358–3363.
- M.P. Araújo, O.S.G.P. Soares, A.J.S. Fernandes, M.F.R. Pereira,
C. Freire, Tuning the surface chemistry of graphene flakes:
new strategies for selective oxidation, RSC Adv., 7 (2017)
14290–14301.
- J. Pokhrel, N. Bhoria, S. Anastasiou, T. Tsoufis, D. Gournis,
G. Romanos, G.N. Karanikolos, CO2 adsorption behavior
of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions,
Microporous Mesoporous Mater., 267 (2018) 53–67.
- X. Xie, Y. Zhou, K. Huang, Advances in microwave-assisted
production of reduced graphene oxide, Front. Chem., 7 (2019)
1–11.
- F. Pendolino, N. Armata, Synthesis, Characterization and
Models of Graphene Oxide, F. Pendolino, N. Armata, Eds.,
Graphene Oxide in Environmental Remediation Process,
SpringerBriefs in Applied Sciences and Technology, Springer,
Cham, 2017, pp. 5–21.
- Rattana, S. Chaiyakun, N. Witit-anun, N. Nuntawong,
P. Chindaudom, S. Oaew, C. Kedkeaw, P. Limsuwan, Preparation
and characterization of graphene oxide nanosheets, Procedia
Eng., 32 (2012) 759–764.
- X. Mei, J. Ouyang, Ultrasonication-assisted ultrafast reduction
of graphene oxide by zinc powder at room temperature, Carbon
N. Y., 49 (2011) 5389–5397.
- A.M. Alkadhem, M.A.A. Elgzoly, S.A. Onaizi, Novel aminefunctionalized
magnesium oxide adsorbents for CO2 capture
at ambient conditions, J. Environ. Chem. Eng., 8 (2020) 103968,
doi: 10.1016/j.jece.2020.103968.
- K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti,
J. Rouquerol, T. Siemieniewska, Reporting physisorption data
for gas/solid systems with special reference to the determination
of surface area and porosity, Pure Appl. Chem., 57 (1985)
603–619.
- B.A. Labaran, M.S. Vohra, Application of activated carbon
produced from phosphoric acid-based chemical activation
of oil fly ash for the removal of some charged aqueous phase
dyes: role of surface charge, adsorption kinetics, and modeling,
Desal. Water Treat., 57 (2016) 16034–16052.
- B.A. Labaran, M.S. Vohra, Solar photocatalytic removal of
selenite, selenate, and selenocyanate species, CLEAN – Soil, Air,
Water, 45 (2017) 1600268, doi: 10.1002/clen.201600268.
- M.S. Vohra, Photocatalytic treatment of mixed selenocyanate
and phenol streams: process modeling, optimization, and
kinetics, Environ. Prog. Sustainable Energy, 13401 (2020) 1–11.
- S.A.A. Ahmed, M.S. Vohra, Treatment of aqueous selenocyanate
(SeCN–) using combined TiO2 photocatalysis and 2-line
ferrihydrite adsorption, Desal. Water Treat., 211 (2021) 267–279.
- H. Rasoulzadeh, A. Sheikhmohammadi, E. Asgari,
B. Hashemzadeh, The adsorption behaviour of triclosan onto
magnetic bio polymer beads impregnated with diatomite, Int.
J. Environ. Anal. Chem., (2021) 1–13, doi:10.1080/03067319.
2021.1922684.
- E. Asgari, F. Mohammadi, H. Nourmoradi, A. Sheikhmohammadi,
Z. Rostamifasih, B. Hashemzadeh, H. Arfaeinia, Heterogeneous
catalytic degradation of nonylphenol using persulphate
activated by natural pyrite: response surface methodology
modelling and optimisation, Int. J. Environ. Anal. Chem., (2020)
1–20, doi:10.1080/03067319.2020.1807528.
- X. Xue, J. Xu, S.A. Baig, X. Xu, Synthesis of graphene oxide
nanosheets for the removal of Cd(II) ions from acidic aqueous
solutions, J. Taiwan Inst. Chem. Eng. 59 (2016) 365–372.
- M. Ghorbani, A. Shams, O. Seyedin, N. Afshar Lahoori, Magnetic
ethylene diamine-functionalized graphene oxide as novel
sorbent for removal of lead and cadmium ions from wastewater
samples, Environ. Sci. Pollut. Res., 25 (2018) 5655–5667.
- J. Wei, M.F. Aly Aboud, I. Shakir, Z. Tong, Y. Xu, Graphene
oxide-supported organo-montmorillonite composites for the
removal of Pb(II), Cd(II), and As(V) contaminants from water,
ACS Appl. Nano Mater., 3 (2020) 806–813.