References

  1. O. Faroon, N. Roney, J. Taylor, A. Ashizawa, M.H. Lumpkin, D.J. Plewak, Acrolein environmental levels and potential for human exposure, Toxicol. Ind. Health, 24 (2008) 543–564.
  2. J. Namieśnik, A. Rabajczyk, The speciation and physicochemical forms of metals in surface waters and sediments, Chem. Speciation Bioavailability, 22 (2010) 1–24.
  3. J.Y. Lim, N.M. Mubarak, E.C. Abdullah, S. Nizamuddin, M. Khalid, Inamuddin, Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals — a review, J. Ind. Eng. Chem., 66 (2018) 29–44.
  4. G. Bhanjana, N. Dilbaghi, K.-H. Kim, S. Kumar, Carbon nanotubes as sorbent material for removal of cadmium, J. Mol. Liq., 242 (2017) 966–970.
  5. J. Acharya, U. Kumar, B.C. Meikap, Thermodynamic characterization of adsorption of lead(II) ions on activated carbon developed from tamarind wood from aqueous solution, S. Afr. J. Chem. Eng., 18 (2013) 70–76.
  6. M.K. Mondal, Removal of Pb(II) ions from aqueous solution using activated tea waste: adsorption on a fixed-bed column, J. Environ. Manage., 90 (2009) 3266–3271.
  7. S. Yang, J. Hu, C. Chen, D. Shao, X. Wang, Mutual effects of Pb(II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions, Environ. Sci. Technol., 45 (2011) 3621–3627.
  8. M. Mom, M. Purenovi, A. Boji, A. Zarubica, M. Ran, Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon, Desalination, 276 (2011) 53–59.
  9. S. Huang, S. Song, R. Zhang, T. Wen, X. Wang, S. Yu, W. Song, T. Hayat, A. Alsaedi, X. Wang, Construction of layered double hydroxides/hollow carbon microsphere composites and its applications for mutual removal of Pb(II) and humic acid from aqueous solutions, ACS Sustainable Chem. Eng., 5 (2017) 11268–11279.
  10. B. Singha, S.K. Das, Removal of Pb(II) ions from aqueous solution and industrial effluent using natural biosorbents, Environ. Sci. Pollut. Res., 19 (2012) 2212–2226.
  11. M. Arbabi, M., Hemati, S., Amiri, Removal of lead ions from industrial wastewater: a review of removal methods, Int. J. Epidemiol. Res., 2 (2015) 105–109.
  12. M. Özacar, İ. Ayhan Şengil, H. Türkmenler, Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin, Chem. Eng. J., 143 (2008) 32–42.
  13. J. Namieśnik, A.R. Jczyk, Speciation analysis of chromium in environmental samples, Environ. Sci. Technol., 3389 (2012) 327–377.
  14. J. Wang, P. Wang, H. Wang, J. Dong, W. Chen, X. Wang, S. Wang, T. Hayat, A. Alsaedi, X. Wang, Preparation of molybdenum disulfide coated Mg/Al layered double hydroxide composites for efficient removal of chromium(VI), ACS Sustainable Chem. Eng., 5 (2017) 7165–7174.
  15. C. He, Z. Yang, J. Ding, Y. Chen, X. Tong, Y. Li, Effective removal of Cr(VI) from aqueous solution by
    3-aminopropyltriethoxysilanefunctionalized graphene oxide, Colloids Surf., A, 520 (2017) 448–458.
  16. F. Teshale, R. Karthikeyan, O. Sahu, Synthesized bioadsorbent from fish scale for chromium(III) removal, Micron, 130 (2020) 102817, doi: 10.1016/j.micron.2019.102817.
  17. T. Saheed Kazeem, Treatment of aqueous selenocyanate anions using electrocoagulation, Int. J. Electrochem. Sci., 14 (2019) 10538–10564.
  18. M.S. Vohra, Selenocyanate (SeCN) contaminated wastewater treatment using TiO2 photocatalysis: SeCN complex destruction, intermediates formation, and removal of selenium species, Fresenius Environ. Bull., 24 (2015) 1108–1118.
  19. B.A. Labaran, M.S. Vohra, Photocatalytic removal of selenite and selenate species: effect of EDTA and other process variables, Environ. Technol. (United Kingdom), 35 (2014) 1091–1100.
  20. B.A. Labaran, M.S. Vohra, Competitive adsorption of selenite [Se(IV)], selenate [Se(VI)] and selenocyanate [SeCN] species onto TiO2: Experimental findings and surface complexation modelling, Desal. Water Treat., 124 (2018) 267–278.
  21. T. Mohammed, T.S. Kazeem, M.H. Essa, B.A. Labaran, M.S. Vohra, Comparative study on electrochemical treatment of arsenite: effects of process parameters, sludge characterization and kinetics, Arabian J. Sci. Eng., 45 (2020) 3799–3815.
  22. M.S. Vohra, M.S. Al-Suwaiyan, M.H. Essa, M.M.I. Chowdhury, M.M. Rahman, B.A. Labaran, Application of solar photocatalysis and solar photo-Fenton processes for the removal of some critical charged pollutants: mineralization trends and formation of reaction intermediates, Arabian J. Sci. Eng., 41 (2016) 3877–3887.
  23. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene, Chem. Rev., 110 (2010) 132–145.
  24. A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited, J. Phys. Chem. B, 102 (1998) 4477–4482.
  25. G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management, Environ. Sci. Technol., 45 (2011) 10454–10462.
  26. L.P. Lingamdinne, Y.L. Choi, I.S. Kim, J.K. Yang, J.R. Koduru, Y.Y. Chang, Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides, J. Hazard. Mater., 326 (2017) 145–156.
  27. L.P. Lingamdinne, J.R. Koduru, R.R. Karri, A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification, J. Environ. Manage., 231 (2019) 622–634.
  28. R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann, A. Gagor, B. Feist, R. Wrzalik, Adsorption of divalent metal ions from aqueous solutions using graphene oxide, Dalton Trans., 42 (2013) 5682–5689.
  29. C. Hontoria-Lucas, A.J. López-Peinado, J. de D. López-González, M.L. Rojas-Cervantes, R.M. Martín-Aranda, Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization, Carbon N. Y., 33 (1995) 1585–1592.
  30. R. Sitko, B. Zawisza, E. Malicka, Modification of carbon nanotubes for preconcentration, separation and determination of trace-metal ions, TrAC, Trends Anal. Chem., 37 (2012) 22–31.
  31. S. Kaushal, N. Kaur, M. Kaur, P.P. Singh, Dual-responsive pectin/graphene oxide (Pc/GO) nano-composite as an efficient adsorbent for Cr(III) ions and photocatalyst for degradation of organic dyes in waste water, J. Photochem. Photobiol., A, 403 (2020) 112841, doi: 10.1016/j.jphotochem.2020.112841.
  32. A.O. Salawudeen, B.S. Tawabini, A.M. Al-shaibani, A. Saleh, Poly(2-hydroxyethyl methacrylate) grafted graphene oxide for cadmium removal from water with interaction mechanisms, Environ. Nanotechnol. Monit. Manage., 13 (2020) 100288, doi: 10.1016/j.enmm.2020.100288.
  33. S.Z.N. Ahmad, W.N.W. Salleh, N.H. Ismail, N. Rosman, N.A.M. Razali, R. Hamdan, A.F. Ismail, Zeolitic imidazolate framework-L incorporated graphene oxide hybrid for cadmium removal, Mater. Today:. Proc., 42 (2021) 8–14.
  34. Y. Zhang, W. Peng, L. Xia, S. Song, Adsorption of Cd(II) at the interface of water and graphene oxide prepared from flaky graphite and amorphous graphite, J. Environ. Chem. Eng., 5 (2017) 4157–4164.
  35. K.C. Lai, L.Y. Lee, B.Y.Z. Hiew, S. Thangalazhy-Gopakumar, S. Gan, Facile synthesis of xanthan biopolymer integrated 3D hierarchical graphene oxide/titanium dioxide composite for adsorptive lead removal in wastewater, Bioresour. Technol., 309 (2020) 123296, doi: 10.1016/j.biortech.2020.123296.
  36. Y. Chen, W. Jiang, C. Zhao, Z. Liu, Y. Liang, Facile modification of graphene oxide by humic acid for enhancing hexavalent chromium photoreduction, J. Environ. Chem. Eng., 9 (2021) 104759, doi:10.1016/j.jece.2020.104759.
  37. J.H. Lee, J.-A. Park, H.-G. Kim, J.-H. Lee, S.-H. Cho, K. Choi, K.-W. Jung, S.Y. Lee, J.-W. Choi, Most suitable amino silane molecules for surface functionalization of graphene oxide toward hexavalent chromium adsorption, Chemosphere, 251 (2020) 126387, doi: 10.1016/j.chemosphere.2020.126387.
  38. P.L. Narayana, L.P. Lingamdinne, R.R. Karri, S. Devanesan, M.S. AlSalhi, N.S. Reddy, Y.-Y. Chang, J. Reddy Koduru, Predictive capability evaluation and optimization of Pb(II) removal by reduced graphene oxide-based inverse spinel nickel ferrite nanocomposite, Environ. Res., 204 (2022) 112029, doi:10.1016/j.envres.2021.112029.
  39. L.P. Lingamdinne, J.R. Koduru, Y.Y. Chang, R.R. Karri, Process optimization and adsorption modeling of Pb(II) on nickel ferrite-reduced graphene oxide nano-composite, J. Mol. Liq., 250 (2018) 202–211.
  40. M. Li, Q. Hu, H. Shan, W. Yu, Z.-X. Xu, Fabrication of copper phthalocyanine/reduced graphene oxide nanocomposites for efficient photocatalytic reduction of hexavalent chromium, Chemosphere, 263 (2021) 128250, doi: 10.1016/j.chemosphere. 2020.128250.
  41. X. Li, H. Zhou, W. Wu, S. Wei, Y. Xu, Y. Kuang, Studies of heavy metal ion adsorption on chitosan/sulfydryl-functionalized graphene oxide composites, J. Colloid Interface Sci., 448 (2015) 389–397.
  42. C. Bai, L. Wang, Z. Zhu, Adsorption of Cr(III) and Pb(II) by graphene oxide/alginate hydrogel membrane: characterization, adsorption kinetics, isotherm and thermodynamics studies, Int. J. Biol. Macromol., 147 (2020) 898–910.
  43. M.E. Mahmoud, M.M. Osman, H. Abdel-Aal, G.M. Nabil, Microwave-assisted adsorption of Cr(VI), Cd(II) and Pb(II) in presence of magnetic graphene oxide-covalently functionalizedtryptophan nanocomposite, J. Alloys Compd., 823 (2020) 153855, doi: 10.1016/j.jallcom.2020.153855.
  44. A. Sheikhmohammadi, S.M. Mohseni, B. Hashemzadeh, E. Asgari, R. Sharafkhani, M. Sardar, M. Sarkhosh, M. Almasiane, Fabrication of magnetic graphene oxide nanocomposites functionalized with a novel chelating ligand for the removal of Cr(VI): modeling, optimization, and adsorption studies, Desal. Water Treat., 160 (2019) 297–307.
  45. A. Sheikhmohammadi, B. Hashemzadeh, A. Alinejad, S.M. Mohseni, M. Sardar, R. Sharafkhani, M. Sarkhosh, E. Asgari, A. Bay, Application of graphene oxide modified with the phenopyridine and 2-mercaptobenzothiazole for the adsorption of Cr(VI) from wastewater: optimization, kinetic, thermodynamic and equilibrium studies, J. Mol. Liq., 285 (2019) 586–597.
  46. A. Sheikhmohammadi, S.M. Mohseni, R. Khodadadi, M. Sardar, M. Abtahi, S. Mahdavi, H. Keramati, Z. Dahaghin, S. Rezaei, M. Almasian, M. Sarkhosh, M. Faraji, S. Nazaril, Application of graphene oxide modified
    with 8-hydroxyquinoline for the adsorption of Cr(VI) from wastewater: optimization, kinetic, thermodynamic and equilibrium studies, J. Mol. Liq., 233 (2017) 75–88.
  47. Y. Zhang, S. Zhang, T.S. Chung, Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration, Environ. Sci. Technol., 49 (2015) 10235–10242.
  48. Y. Zhang, S. Zhang, J. Gao, T.S. Chung, Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal, J. Membr. Sci., 515 (2016) 230–237.
  49. H. Rasoulzadeh, A. Sheikhmohammadi, M. Abtahi, M. Alipour, B. Roshan, Predicting the capability of diatomite magnano composite boosted with polymer extracted from brown seaweeds for the adsorption of cyanide from water solutions using the response surface methodology: modelling and optimisation, Int. J. Environ. Anal. Chem., (2021) 1–14, doi: 10.1080/03067319.2021.1931160.
  50. E. Asgari, A. Sheikhmohammadi, J. Yeganeh, Application of the Fe3O4-chitosan nano-adsorbent for the adsorption of metronidazole from wastewater: optimization, kinetic, thermodynamic and equilibrium studies, Int. J. Biol. Macromol., 164 (2020) 694–706.
  51. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
  52. S.S. Ranade, P. Thiagarajan, Selection of a design for response surface, IOP Conf. Ser.: Mater. Sci. Eng., 263 (2017) 022043.
  53. Q. Huang, H.J. Sun, T.J. Peng, The influence of temperature and oxidation time on the preparation of graphite oxide, Adv. Mater. Res., 366 (2011) 291–295.
  54. X.-j. Hu, Y.-g. Liu, H. Wang, A.-w. Chen, G.-m. Zeng, S.-m. Liu, Y.-m. Guo, X. Hu, T.-t. Li, Y.-q. Wang, L. Zhou,
    S.-h. Liu, Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite, Sep. Purif. Technol., 108 (2013) 189–195.
  55. P. Liu, Y. Huang, L. Wang, A facile synthesis of reduced graphene oxide with Zn powder under acidic condition, Mater. Lett., 91 (2013) 125–128.
  56. L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods,
    J. Electron. Spectrosc. Relat. Phenom., 195 (2014) 145–154.
  57. S.-M. Hong, S.H. Kim, K.B. Lee, Adsorption of carbon dioxide on 3-aminopropyl-triethoxysilane modified graphite oxide, Energy Fuels, 27 (2013) 3358–3363.
  58. M.P. Araújo, O.S.G.P. Soares, A.J.S. Fernandes, M.F.R. Pereira, C. Freire, Tuning the surface chemistry of graphene flakes: new strategies for selective oxidation, RSC Adv., 7 (2017) 14290–14301.
  59. J. Pokhrel, N. Bhoria, S. Anastasiou, T. Tsoufis, D. Gournis, G. Romanos, G.N. Karanikolos, CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions, Microporous Mesoporous Mater., 267 (2018) 53–67.
  60. X. Xie, Y. Zhou, K. Huang, Advances in microwave-assisted production of reduced graphene oxide, Front. Chem., 7 (2019) 1–11.
  61. F. Pendolino, N. Armata, Synthesis, Characterization and Models of Graphene Oxide, F. Pendolino, N. Armata, Eds., Graphene Oxide in Environmental Remediation Process, SpringerBriefs in Applied Sciences and Technology, Springer, Cham, 2017, pp. 5–21.
  62. Rattana, S. Chaiyakun, N. Witit-anun, N. Nuntawong, P. Chindaudom, S. Oaew, C. Kedkeaw, P. Limsuwan, Preparation and characterization of graphene oxide nanosheets, Procedia Eng., 32 (2012) 759–764.
  63. X. Mei, J. Ouyang, Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature, Carbon N. Y., 49 (2011) 5389–5397.
  64. A.M. Alkadhem, M.A.A. Elgzoly, S.A. Onaizi, Novel aminefunctionalized magnesium oxide adsorbents for CO2 capture at ambient conditions, J. Environ. Chem. Eng., 8 (2020) 103968, doi: 10.1016/j.jece.2020.103968.
  65. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
  66. B.A. Labaran, M.S. Vohra, Application of activated carbon produced from phosphoric acid-based chemical activation of oil fly ash for the removal of some charged aqueous phase dyes: role of surface charge, adsorption kinetics, and modeling, Desal. Water Treat., 57 (2016) 16034–16052.
  67. B.A. Labaran, M.S. Vohra, Solar photocatalytic removal of selenite, selenate, and selenocyanate species, CLEAN – Soil, Air, Water, 45 (2017) 1600268, doi: 10.1002/clen.201600268.
  68. M.S. Vohra, Photocatalytic treatment of mixed selenocyanate and phenol streams: process modeling, optimization, and kinetics, Environ. Prog. Sustainable Energy, 13401 (2020) 1–11.
  69. S.A.A. Ahmed, M.S. Vohra, Treatment of aqueous selenocyanate (SeCN) using combined TiO2 photocatalysis and 2-line ferrihydrite adsorption, Desal. Water Treat., 211 (2021) 267–279.
  70. H. Rasoulzadeh, A. Sheikhmohammadi, E. Asgari, B. Hashemzadeh, The adsorption behaviour of triclosan onto magnetic bio polymer beads impregnated with diatomite, Int. J. Environ. Anal. Chem., (2021) 1–13, doi:10.1080/03067319. 2021.1922684.
  71. E. Asgari, F. Mohammadi, H. Nourmoradi, A. Sheikhmohammadi, Z. Rostamifasih, B. Hashemzadeh, H. Arfaeinia, Heterogeneous catalytic degradation of nonylphenol using persulphate activated by natural pyrite: response surface methodology modelling and optimisation, Int. J. Environ. Anal. Chem., (2020) 1–20, doi:10.1080/03067319.2020.1807528.
  72. X. Xue, J. Xu, S.A. Baig, X. Xu, Synthesis of graphene oxide nanosheets for the removal of Cd(II) ions from acidic aqueous solutions, J. Taiwan Inst. Chem. Eng. 59 (2016) 365–372.
  73. M. Ghorbani, A. Shams, O. Seyedin, N. Afshar Lahoori, Magnetic ethylene diamine-functionalized graphene oxide as novel sorbent for removal of lead and cadmium ions from wastewater samples, Environ. Sci. Pollut. Res., 25 (2018) 5655–5667.
  74. J. Wei, M.F. Aly Aboud, I. Shakir, Z. Tong, Y. Xu, Graphene oxide-supported organo-montmorillonite composites for the removal of Pb(II), Cd(II), and As(V) contaminants from water, ACS Appl. Nano Mater., 3 (2020) 806–813.