References

  1. Q. Zhou, N. Yang, Y. Li, B. Ren, X. Ding, H. Bian, X Yao, Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017, Global Ecol. Conserv., 22 (2020) e00925, doi: 10.1016/j.gecco.2020.e00925.
  2. H. Ali, E. Khan, Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—concepts and implications for wildlife and human health, Human Ecol. Risk Assess.: An Int. J., 25 (2019) 1353–1376.
  3. A. Bashir, L.A. Malik, S. Ahad, T. Manzoor, M.A. Bhat, G.N. Dar, A.H. Pandith, Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods, Environ. Chem. Lett., 17 (2019) 729–754.
  4. S.K. Gunatilake, Methods of removing heavy metals from industrial wastewater, J. Multidiscip. Eng. Sci. Stud. (JMESS), 1 (2015) 12–18.
  5. A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour, Removal of heavy metals from industrial wastewaters: a review, ChemBioEng Rev., 4 (2017) 37–59.
  6. N. Ates, N. Uzal, Removal of heavy metals from aluminum anodic oxidation wastewaters by membrane filtration, Environ. Sci. Pollut. Res., 25 (2018) 22259–22272.
  7. M. Hallajiqomi, M. Mehdipourghazi, F. Varaminian, Degradation of tetracycline using photocatalytic membrane reactor with nanocomposite Ag doped clinoptilolite zeolite photocatalyst, Desal. Water Treat., 139 (2019) 111–122.
  8. A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova, S. Agarwal, A.G. Tkachev, V.K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review, Ecotoxicol. Environ. Saf., 148 (2018) 702–712.
  9. A. Qdais, Developing a decision support tool for managing sludge from wastewater treatment plants in Jordan, Desal. Water Treat., 139 (2019) 95–104.
  10. J. Azamat, A. Khataee, Improving the performance of heavy metal separation from water using MoS2 membrane: molecular dynamics simulation, Comput. Mater. Sci., 137 (2017) 201–207.
  11. Y. Zou, X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, X. Wang, Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review, Environ. Sci. Technol., 50 (2016) 7290–7304.
  12. X. Wu, R. Cao, J. Hu, C. Zho, L. Fu, X. Wei, Graphene-supported iron-based composites: a review of applications to wastewater treatment, Desal. Water Treat., 181 (2020) 300–320.
  13. G. Sharma, D.D. Dionysiou, S. Sharma, A. Kumar, H. Ala’a, Mu. Naushad, F.J. Stadler, Highly efficient Sr/Ce/activated carbon bimetallic nanocomposite for photoinduced degradation of rhodamine B, Catal. Today, 335 (2019) 437–451.
  14. J. Iqbal, N.S. Shah, M. Sayed, M. Imran, N. Muhammad, F.M. Howari, M.A. Haija, Synergistic effects of activated carbon and nano-zerovalent copper on the performance of hydroxyapatite-alginate beads for the removal of As3+ from aqueous solution, J. Cleaner Prod., 235 (2019) 875–886.
  15. G. Sharma, Mu. Naushad, Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: isotherm and kinetic modelling, J. Mol. Liq., 310 (2020) 113025, doi:10.1016/j.molliq.2020.113025.
  16. Y. Rashtbari, F. Sher, S. Afshin, A. Hamzezadeh, S. Ahmadi, O. Azhar, A. Rastegar, S. Ghosh, Y. Poureshgh, Green synthesis of zero-valent iron nanoparticles and loading effect on activated carbon for furfural adsorption, Chemosphere, 287 (2022) 132114, doi: 10.1016/j.chemosphere.2021.132114.
  17. I. Anastopoulos, I. Pashalidis, A. Hosseini-Bandegharaei, D.A. Giannakoudakis, A. Robalds, M. Usman,
    L.B. Escudero, Y. Zhou, J. Carlos Colmenares, A. Núñez-Delgado, É.C. Lima, Agricultural biomass/waste as adsorbents for toxic metal decontamination of aqueous solutions, J. Mol. Liq., 295 (2019) 111684, doi:10.1016/j.molliq.2019.111684.
  18. M. Jain, V.K. Garg, K. Kadirvelu, M. Sillanpää, Adsorption of heavy metals from multi-metal aqueous solution by sunflower plant biomass-based carbons, Int. J. Environ. Sci. Technol., 13 (2016) 493–500.
  19. M. Fan, X.E. Wang, Q. Song, L. Zhang, B. Ren, X. Yang, Review of biomass-based materials for uranium adsorption, J. Radioanal. Nucl. Chem., 330 (2021) 589–602.
  20. J.U. Ani, K.G. Akpomie, U.C. Okoro, L.E. Aneke, O.D. Onukwuli, O.T. Ujam, Potentials of activated carbon produced from biomass materials for sequestration of dyes, heavy metals, and crude oil components from aqueous environment, Appl. Water Sci., 10 (2020) 1–11, doi: 10.1007/s13201-020-1149-8.
  21. L.C. Sorensen, A.M. Fox, H. Jung, E.G. Martin, Lead exposure and academic achievement: evidence from childhood lead poisoning prevention efforts, J. Popul. Econ., 32 (2019) 179–218.
  22. J. Djedjibegovic, A. Marjanovic, D. Tahirovic, K. Caklovica, A. Turalic, A. Lugusic, F. Caklovica, Heavy metals in commercial fish and seafood products and risk assessment in adult population in Bosnia and Herzegovina, Sci. Rep.-UK, 10 (2020) 1–8.
  23. H. Alidadi, S.B. Tavakoly Sany, B. Zarif Garaati Oftadeh, T. Mohamad, H. Shamszade, M. Fakhari, Health risk assessments of arsenic and toxic heavy metal exposure in drinking water in northeast Iran, Environ. Health Preventative Med., 24 (2019) 1–17.
  24. J. Podgorski, M. Berg, Global threat of arsenic in groundwater, Science, 368 (2020) 845–850.
  25. S. Prasad, K.K. Yadav, S. Kumar, N. Gupta, M.M.S. Cabral-Pinto, S. Rezania, N. Radwan, J. Alam, Chromium contamination and effect on environmental health and its remediation: a sustainable approaches, J. Environ. Manage., 285 (2021) 112174, doi: 10.1016/j.jenvman.2021.112174.
  26. Y.M. Bar-On, R. Phillips, R. Milo, The biomass distribution on Earth, Proc. Natl. Acad. Sci. U.S.A., 115 (2018) 6506–6511.
  27. H. Rabemanolontsoa, S. Saka, Comparative study on chemical composition of various biomass species, RSC Adv., 3 (2013) 3946–3956.
  28. B. Bushra, N. Remya, Biochar from pyrolysis of rice husk biomass—characteristics, modification and environmental application, Biomass Convers. Biorefin., (2020) 1–12, doi: 10.1007/s13399-020-01092-3.
  29. L. Ramrakhiani, S. Ghosh, S. Majumdar, Surface modification of naturally available biomass for enhancement of heavy metal removal efficiency, upscaling prospects, and management aspects of spent biosorbents: a review, Appl. Biochem. Biotech., 180 (2016) 41–78.
  30. R.K. Gautam, A. Mudhoo, G. Lofrano, M.C. Chattopadhyaya, Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration, J. Environ. Chem. Eng., 2 (2014) 239–259.
  31. B. Thomas, L.K. Alexander, Surface modification of biomass for the enhancement of adsorptive removal of cationic dye from aqueous solution, Mater. Today: Proc., 33 (2020) 2086–2091.
  32. Q. Wang, Z. Lai, J. Mu, D. Chu, X. Zang, Converting industrial waste cork to biochar as Cu(II) adsorbent via slow pyrolysis, Waste Manage.,105 (2020) 102–109.
  33. S.K. Das, G.K. Ghosh, R. Avasthe, Conversion of crop, weed and tree biomass into biochar for heavy metal removal and wastewater treatment, Biomass Convers. Biorefin., (2021) 1–14,
    doi: 10.1007/s13399-021-01334-y.
  34. H. Qin, T. Hu, Y. Zhai, N. Lu, J. Aliyeva, The improved methods of heavy metals removal by biosorbents: a review, Environ. Pollut., 258 (2020) 113777, doi: 10.1016/j.envpol.2019.113777.
  35. A.S. Singha, A. Guleria, Utility of chemically modified agricultural waste okra biomass for removal of toxic heavy metal ions from aqueous solution, Eng. Agric. Environ. Food, 8 (2015) 52–60.
  36. C.P. Okoli, P.N. Diagboya, I.O. Anigbogu, B.I. Olu-Owolabi, K.O. Adebowale, Competitive biosorption of Pb(II) and Cd(II) ions from aqueous solutions using chemically modified moss biomass (Barbula lambarenensis), Environ. Earth Sci., 76 (2017) 1–10.
  37. B.M. Ibrahim, N.A. Fakhre, Crown ether modification of starch for adsorption of heavy metals from synthetic wastewater, Int. J. Biol. Macromol., 123 (2019) 70–80.
  38. M. Chen, X. Wang, H. Zhang, Comparative research on selective adsorption of Pb(II) by biosorbents prepared by two kinds of modifying waste biomass: Highly-efficient performance, application and mechanism, J. Environ. Manage., 288 (2021) 112388, doi: 10.1016/j.jenvman.2021.112388.
  39. İ. Sargın, G. Arslan, M. Kaya, Efficiency of chitosan-algal biomass composite microbeads at heavy metal removal, React. Funct. Polym., 98 (2016) 38–47.
  40. M. Ruthiraan, N.M. Mubarak, E.C. Abdullah, M. Khalid, S. Nizamuddin, R. Walvekar, R.R. Karri, An Overview of Magnetic Material: Preparation and Adsorption Removal of Heavy Metals From Wastewater, K. Abd-Elsalam, M. Mohamed, R. Prasad, Eds., Magnetic Nanostructures. Nanotechnology in the Life Sciences, Springer, Cham, 2019, pp. 131–159.
  41. M.M. Hassan, C.M. Carr, Biomass-derived porous carbonaceous materials and their composites as adsorbents for cationic and anionic dyes: a review, Chemosphere, 265 (2021) 129087, doi:10.1016/j.chemosphere.2020.129087.
  42. E.B. Son, K.M. Poo, J.S. Chang, K.J Chae, Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass, Sci. Total Environ., 615 (2018) 161–168.
  43. W. Qiao, Y. Zhang, H. Xia, Y. Luo, S. Liu, S. Wang, W. Wang, Bioimmobilization of lead by Bacillus subtilis X3 biomass isolated from lead mine soil under promotion of multiple adsorption mechanisms, R. Soc. Open Sci., 6 (2019) 181701, doi: 10.1098/rsos.181701.
  44. Z. Guo, X. Zhang, Y. Kang, J. Zhang, Biomass-derived carbon sorbents for Cd(II) removal: activation and adsorption mechanism, ACS Sustainable Chem. Eng., 5 (2017) 4103–4109.
  45. E. Singh, A. Kumar, R. Mishra, S. You, L. Singh, S. Kumar, R. Kumar, Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution, Bioresour. Technol., 320 (2021) 124278, doi: 10.1016/j.biortech.2020.124278.
  46. B.A. Mohamed, N. Ellis, C.S. Kim, X. Bi, W.H. Chen, Engineered biochars from catalytic microwave pyrolysis for reducing heavy metals phytotoxicity and increasing plant growth, Chemosphere, 271 (2021) 129808, doi:10.1016/j. chemosphere.2021.129808.
  47. H. He, Q. Lu, H. Huang, F. Xue, W. Lin, H. Zhou, W. Wei, Biomass bagasse-based hyperbranched adsorbent for the complete removal of low-level Cr(VI), Cellulose, 27 (2020) 8121–8134.
  48. Y. Jin, C. Zeng, Q.F. Lü, Y. Yu, Efficient adsorption of methylene blue and lead ions in aqueous solutions by 5-sulfosalicylic acid modified lignin, Int. J. Biol. Macromol., 123 (2019) 50–58.
  49. K. Song, Q. Chu, J. Hu, Q. Bu, F. Li, X. Chen, A. Shi, Two-stage alkali-oxygen pretreatment capable of improving biomass saccharification for bioethanol production and enabling lignin valorization via adsorbents for heavy metal ions under the biorefinery concept, Bioresour. Technol., 276 (2019) 161–169.
  50. L. Zhang, S. Tang, C. Jiang, X. Jiang, Y. Guan, Simultaneous and efficient capture of inorganic nitrogen and heavy metals by polyporous layered double hydroxide and biochar composite for agricultural nonpoint pollution control, ACS Appl. Mater. Interfaces, 10 (2018) 43013–43030.
  51. N. Sooksawat, M. Meetam, M. Kruatrachue, P. Pokethitiyook, D. Inthorn, Equilibrium and kinetic studies on biosorption potential of charophyte biomass to remove heavy metals from synthetic metal solution and municipal wastewater, Biorem. J., 20 (2016) 240–251.
  52. I. Morosanu, C. Teodosiu, C. Paduraru, D. Ibanescu, L. Tofan, Biosorption of lead ions from aqueous effluents by rapeseed biomass, New Biotechnol., 39 (2017) 110–124.
  53. W. Zheng, S. Chen, H. Liu, Y. Ma, W. Xu, Study of the modification mechanism of heavy metal ions adsorbed by biomass-activated carbon doped with a solid nitrogen source, RSC Adv., 9 (2019) 37440–37449.
  54. S. Siddiquee, K. Rovina, S.A. Azad, L. Naher, S. Suryani, P. Chaikaew, Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review, J. Microbiol. Biochem. Technol., 7 (2015) 384–393.
  55. D. Huang, B. Li, J. Ou, W. Xue, J. Li, Z. Li, X. Guo, Megamerger of biosorbents and catalytic technologies for the removal of heavy metals from wastewater: preparation, final disposal, mechanism and influencing factors, J. Environ. Manage., 261 (2020) 109879, doi: 10.1016/j.jenvman.2019.109879.
  56. L.J. Jönsson, C. Martín, Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects, Bioresour. Technol., 199 (2016) 103–112.
  57. S.M. Kharrazi, N. Mirghaffari, M.M. Dastgerdi, M. Soleimani, A novel post-modification of powdered activated carbon prepared from lignocellulosic waste through thermal tension treatment to enhance the porosity and heavy metals adsorption, Powder Technol., 366 (2020) 358–368.
  58. B. Dang, Y. Chen, H. Wang, B. Chen, C. Jin, Q. Sun, Preparation of high mechanical performance nano-Fe3O4/wood fiber binderless composite boards for electromagnetic absorption via a facile and green method, Nanomaterials, 8 (2018) 52, doi: 10.3390/nano8010052.
  59. I. Elloumi, A. Koubaa, W. Kharrat, C. Bradai, A. Elloumi, Dielectric properties of wood-polymer composites: effects of frequency, fiber nature, proportion, and chemical composition, J. Compos. Sci., 5 (2021) 141, doi:10.3390/jcs5060141.
  60. K. Sun, J. Tang, Y. Gong, H. Zhang, Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water, Environ. Sci. Pollut. Res., 22 (2015) 16640–16651.
  61. S. Khushk, L. Zhang, A.M. Pirzada, M. Irfan, A. Li, Cr(VI) heavy metal adsorption from aqueous solution by KOH treated hydrochar derived from agricultural wastes, AIP Conf. Proc., 2119 (2019) 020003.
  62. D. Jia, C. Li, Adsorption of Pb(II) from aqueous solutions using corn straw, Desal. Water Treat., 56 (2015) 223–231.
  63. R. Meng, T. Chen, Y. Zhang, W. Lu, Y. Liu, T. Lu, H. Wang, Development, modification, and application
    of low-cost and available biochar derived from corn straw for the removal of vanadium(V) from aqueous solution and real contaminated groundwater, RSC Adv., 8 (2018) 21480–21494.
  64. V.T. Duyên, G.T.K. Liên, Đ.V. Tạc, Research on modification of loofah fibers using citric acid for adsorbing some heavy metal ions in water, Tạp chí Khoa học và Công nghệ-Đại học Đà Nẵng, (2015) 96–100.
  65. X. Tang, Q. Zhang, Z. Liu, K. Pan, Y. Dong, Y. Li, Removal of Cu(II) by loofah fibers as a natural and low-cost adsorbent from aqueous solutions, J. Mol. Liq., 199 (2014) 401–407.
  66. F. Zhao, R. Shan, J. Gu, Y. Zhang, H. Yuan, Y. Chen, Magnetically recyclable loofah biochar by KMnO4 modification for adsorption of Cu(II) from aqueous solutions, ACS Omega, 7 (2022) 8844–8853.
  67. E. Šabanović, M. Memić, J. Sulejmanović, A. Selović, Simultaneous adsorption of heavy metals from water by novel lemon-peel based biomaterial, Pol. J. Chem. Technol., 22 (2020) 46–53.
  68. L.T. Popoola, A.S. Yusuff, A.A. Adeyi, O.O. Omotara, Adsorptive removal of heavy metals from oil well produced water using Citrullus lanatus peel: characterization and optimization, S. Afr. J. Chem. Eng., 39 (2022) 19–27.
  69. P.D. Pathak, S.A. Mandavgane, B.D. Kulkarni, Fruit peel waste as a novel low-cost bio adsorbent, Rev. Chem. Eng., 31 (2015) 361–381.
  70. A. Czech, A. Malik, B. Sosnowska, P. Domaradzki, Bioactive substances, heavy metals, and antioxidant activity in whole fruit, peel, and pulp of citrus fruits, Int. J. Food Sci., 2021 (2021) 1–14.
  71. Š. Abdić, M. Memić, E. Šabanović, J. Sulejmanović, S. Begić, Adsorptive removal of eight heavy metals from aqueous solution by unmodified and modified agricultural waste: tangerine peel, Int. J. Environ. Sci. Technol., 15 (2018) 2511–2518.
  72. M.K. Rashed, W. Tayh, Removal of heavy metals from wastewater using pomegranate peel, IOP Conf. Ser.: Mater. Sci. Eng., 881 (2020) 012187.
  73. S. Afroze, T.K. Sen, A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents, Water Air Soil Pollut., 229 (2018) 1–50.
  74. L. Wei, P. Yin, Z. Yang, Y. Xu, W. Jiang, J. Jin, Z. Guo, Enhanced uptake of gold ions from wastewater due to covalent functionalization of organotriphosphonic acid on Japonica shells, Desal. Water Treat., 139 (2019) 228–245.
  75. A. Şen, H. Pereira, M.A. Olivella, I. Villaescusa, Heavy metals removal in aqueous environments using bark as a biosorbent, Int. J. Environ. Sci. Technol., 12 (2015) 391–404.
  76. S. Bai, Agricultural and forestry wastes material as potential adsorbent for heavy metal ions from aqueous solutions: a review, Environ. Sci. Technol., 37 (2014) 94–98 (in Chinese).
  77. H. Lin, J. Xu, Y. Dong, L. Wang, W. Xu, Y. Zhou, Adsorption of heavy metal cadmium(II) ions using chemically modified corncob: mechanism, kinetics, and thermodynamics, Desal. Water Treat., 57 (2016) 18537–18550.
  78. Q.H. Jia, X.J. Xu, D. Gao, X.B, Zhang, Research progress on adsorption of heavy metals in wastewater by corncob, Mod. Chem. Ind., 39 (2019) 33–36 (in Chinese).
  79. K.H. Kamal, M.S. Attia, N.S. Ammar, E.M. Abou-Taleb, Kinetics and isotherms of lead ions removal from wastewater using modified corncob nanocomposite, Inorg. Chem. Commun., 130 (2021) 108742, doi:10.1016/j.inoche.2021.108742.
  80. M. Luo, H. Lin, B. Li, Y. Dong, Y. He, L. Wang, A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water, Bioresour. Technol., 259 (2018) 312–318.
  81. R. Shan, Y. Shi, J. Gu, Y. Wang, H. Yuan, Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems, Chin. J. Chem. Eng., 28 (2020) 1375–1383.
  82. H. Yu, J. Wang, J.X. Yu, Y. Wang, R.A. Chi, Effects of surface modification on heavy metal adsorption performance and stability of peanut shell and its extracts of cellulose, lignin, and hemicellulose, Environ. Sci. Pollut. Res., 27 (2020) 26502–26510.
  83. S. Lata, S.R. Samadder, Removal of heavy metals using rice husk: a review, Int. J. Environ. Res. Dev., 4 (2014) 165–170.
  84. H.D. Da Rocha, E.S. Reis, G.P. Ratkovski, R.J. Da Silva, F.D. Gorza, G.C. Pedro, C.P. De Melo, Use of PMMA/(rice husk ash)/polypyrrole membranes for the removal of dyes and heavy metal ions, J. Taiwan Inst. Chem. Eng., 110 (2020) 8–20.
  85. K.O. Iwuozor, I.P. Oyekunle, I.O. Oladunjoye, E.M. Ibitogbe, T.S. Olorunfemi, A review on the mitigation of heavy metals from aqueous solution using sugarcane bagasse, Sugar Tech., 24 (2022) 1167–1185.
  86. Y.M. Isa, C. Harripersadth, P. Musonge, A. Sayago, M.G. Morales, The application of eggshells and sugarcane bagasse as potential biomaterials in the removal of heavy metals from aqueous solutions, S. Afr. J. Chem. Eng., 34 (2020) 142–150.
  87. M. Wiśniewska, P. Nowicki, Simultaneous removal of lead(II) ions and poly(acrylic acid) macromolecules from liquid phase using of biocarbons obtained from corncob and peanut shell precursors, J. Mol. Liq., 296 (2019) 111806, doi: 10.1016/j. molliq.2019.111806.
  88. C. Zhan, P.R. Sharma, H. He, S.K. Sharma, A. McCauley- Pearl, R. Wang, B.S. Hsiao, Rice husk based nanocellulose scaffolds for highly efficient removal of heavy metal ions from contaminated water, Environ. Sci. Water Res. Technol., 6 (2020) 3080–3090.
  89. M.A.M. Razi, A. Al-Gheethi, I.A. Za, Removal of heavy metals from textile wastewater using sugarcane bagasse activated carbon, Int. J. Eng. Technol., 7 (2018) 112–115.
  90. A.K. Zeraatkar, H. Ahmadzadeh, A.F. Talebi, N.R. Moheimani, M.P. McHenry, Potential use of algae for heavy metal bioremediation, a critical review, J. Environ. Manage., 181 (2016) 817–831.
  91. K.M. Poo, E.B. Son, J.S. Chang, X. Ren, Y.J. Cho, K.J. Chae, Biochars derived from wasted marine macro-algae (Saccharina japonica and Sargassum fusiforme) and their potential for heavy metal removal in aqueous solution, J. Environ. Manage., 206 (2018) 364–372.
  92. R. Foroutan, H. Esmaeili, M. Abbasi, M. Rezakazemi, M. Mesbah, Adsorption behavior of Cu(II) and Co(II) using chemically modified marine algae, Environ. Technol., 39 (2018) 2792–2800.
  93. M. Shakya, P. Sharma, S.S. Meryem, Q. Mahmood, A. Kumar, Heavy metal removal from industrial wastewater using fungi: uptake mechanism and biochemical aspects, J. Environ. Eng., 142 (2016) C6015001, doi:10.1061/(ASCE) EE.1943-7870.0000983.
  94. Z.A. Alothman, A.H. Bahkali, M.A. Khiyami, S.M. Alfadul, S.M. Wabaidur, M. Alam, B.Z. Alfarhan, Low cost biosorbents from fungi for heavy metals removal from wastewater, Sep. Sci. Technol., 55 (2020) 1766–1775.
  95. G. Yan, T. Viraraghavan, Heavy-metal removal from aqueous solution by fungus Mucor rouxii, Water Res., 37 (2003) 4486–4496.
  96. S. Iftekhar, D.L. Ramasamy, V. Srivastava, M.B. Asif, M. Sillanpää, Understanding the factors affecting the adsorption of Lanthanum using different adsorbents: a critical review, Chemosphere, 204 (2018) 413–430.
  97. X. Gao, I. Hassan, Y. Peng, S. Huo, L. Ling, Behaviors and influencing factors of the heavy metals adsorption onto microplastics: a review, J. Cleaner Prod., 319 (2021) 128777, doi: 10.1016/j.jclepro.2021.128777.
  98. R. Arora, Adsorption of heavy metals – a review, Mater. Today: Proc., 18 (2019) 4745–4750.
  99. M. Zhang, Z. Zhang, Y. Peng, L. Feng, X. Li, C. Zhao, K. Sarfaraz, Novel cationic polymer modified magnetic chitosan beads for efficient adsorption of heavy metals and dyes over a wide pH range, Int. J. Biol. Macromol., 156 (2020) 289–301.
  100. K. Naseem, R. Huma, A. Shahbaz, J. Jamal, M.Z.U. Rehman, A. Sharif, Z.H. Farooqi, Extraction of heavy metals from aqueous medium by husk biomass: adsorption isotherm, kinetic and thermodynamic study, Z. Phys. Chem., 233 (2019) 201–223.
  101. Z. Yang, T. Yang, Y. Yang, X. Yi, X. Hao, X. Xie, C.J. Liao, The behavior and mechanism of the adsorption of Pb(II) and Cd(II) by a porous double network porous hydrogel derived from peanut shells, Mater. Today Commun., 27 (2021) 102449, doi: 10.1016/j.mtcomm.2021.102449.
  102. F. Noli, E. Kapashi, M. Kapnisti, Biosorption of uranium and cadmium using sorbents based on Aloe vera wastes, J. Environ. Chem. Eng., 7 (2019) 102985, doi: 10.1016/j. jece.2019.102985.
  103. A. Agarwal, U. Upadhyay, I. Sreedhar, S.A. Singh, C.M. Patel, A review on valorization of biomass in heavy metal removal from wastewater, J. Water Process Eng., 38 (2020) 101602, doi: 10.1016/j.jwpe.2020.101602.
  104. J. He, V. Strezov, X. Zhou, R. Kumar, T. Kan, Pyrolysis of heavy metal contaminated biomass pre-treated with ferric salts: product characterisation and heavy metal deportment, Bioresour. Technol., 313 (2020) 123641, doi: 10.1016/j. biortech.2020.123641.
  105. S.Y. Lee, H.J. Choi, Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution, J. Environ. Manage., 209 (2018) 382–392.
  106. S. Tuomikoski, H. Runtti, H. Romar, U. Lassi, T. Kangas, Multiple heavy metal removal simultaneously by a biomassbased porous carbon, Water Environ. Res., 93 (2021) 1303–1314.
  107. A.M.S.S.A. Dubey, A. Mishra, S. Singhal, Application of dried plant biomass as novel low-cost adsorbent for removal of cadmium from aqueous solution, Int. J. Environ. Sci. Technol., 11 (2014) 1043–1050.
  108. M. Imran, K. Anwar, M. Akram, G.M. Shah, I. Ahmad, N. Samad Shah, R.J. Schotting, Biosorption of Pb(II) from contaminated water onto Moringa oleifera biomass: kinetics and equilibrium studies, Int. J. Phytorem., 21 (2019) 777–789.
  109. M. Rizwan, S. Ali, H. Rizvi, J. Rinklebe, D.C. Tsang, E. Meers, W. Ishaque, Phytomanagement of heavy metals in contaminated soils using sunflower: a review, Crit. Rev. Env. Sci. Technol., 46 (2016) 1498–1528.
  110. Y. Li, J. Liu, Q. Yuan, H. Tang, F. Yu, X. Lv, A green adsorbent derived from banana peel for highly effective removal of heavy metal ions from water, RSC Adv., 6 (2016) 45041–45048.