References

  1. N.M. Nor, L.C. Lau, K.T. Lee, A.R. Mohamed, Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review, J. Environ. Chem. Eng., 1 (2013) 658–666.
  2. F. Gao, Y.-h. Zang, Y. Wang, C.-q. Guan, J.-y. Qu, M.-b. Wu. A review of the synthesis of carbon materials for energy storage from biomass and coal/heavy oil waste, New Carbon Mater., 36 (2021) 34–48.
  3. S.Z. Naji, C.T. Tye, A review of the synthesis of activated carbon for biodiesel production: precursor, preparation, and modification, Energy Convers. Manage.: X, 13 (2022) 100152, doi:10.1016/j.ecmx.2021.100152.
  4. H. Tounsadi, A. Khalidi, M. Farnane, M. Abdennouri, N. Barka, Experimental design for the optimization of preparation conditions of highly efficient activated carbon from Glebionis coronaria L. and heavy metals removal ability, Process Saf. Environ. Prot., 100 (2016) 710–723.
  5. D. Savova, E. Apak, E. Ekinci, F. Yardim, N. Petrov, T. Budinova, M. Razvigorova, V. Minkova, Biomass conversion to carbon adsorbents and gas, Biomass Bioenergy, 21 (2001) 133–142.
  6. S. Mateo, A.J. Moya, G. Hodaifa, S. Sánchez, M. Cuevas, Valorization of olive endocarp from olive oil and table olive processing as a low-cost bioadsorbent for the removal of furfural from aqueous solutions, J. Water Process Eng., 44 (2021) 102442, doi: 10.1016/j.jwpe.2021.102442.
  7. Z. Belala, M. Belhachemi, M. Jeguirim, Activated carbon prepared from date pits for the retention of NO2 at low temperature, Int. J. Chem. Reactor Eng., 12 (2014) 717–726.
  8. K. Rida, A. Bouanika, M. Boudellal, A. Boukhemkhem, Valorization of a natural residue (sawdust) as adsorbent to remove the acetic acid in aqueous solutions, Desal. Water Treat., 56 (2015) 2731–2738.
  9. S. Benhabiles, K. Rida, Production of efficient activated carbon from sawdust for the removal of dyes in single and binary systems – a full factorial design, Part. Sci. Technol.: An Int. J., 39 (2021) 237–251.
  10. E. Rosson, P. Sgarbossa, M. Mozzon, F. Venturino, S. Bogialli, A. Glisenti, A. Talon, E. Moretti, S.M. Carturan, S. Tamburini, A. Famengo, A.P. da Costa Ribeiro, S. Benhabiles, R. Kamel, F. Zorzi, R. Bertani, Novel correlations between spectroscopic and morphological properties of activated carbons from waste coffee grounds, Processes, 9 (2021) 1637, doi: 10.3390/pr9091637.
  11. F. Wang, Y.-q. Dang, X. Tian, S. Harrington, Y.-q. Ma. Fabrication of magnetic activated carbons from corn cobs using the pickle liquor from the surface treatment of iron and steel, New Carbon Mater., 33 (2018) 303–309.
  12. Y. Yang, F.S. Cannon, Biomass activated carbon derived from pine sawdust with steam bursting pretreatment; perfluorooctanoic acid and methylene blue adsorption, Bioresour. Technol., 344 (2022) 126161, doi:10.1016/j.biortech.2021.126161.
  13. A. Regti, M.R. Laamari, S.-E. Stiriba, M. El Haddad, Use of response factorial design for process optimization of basic dye adsorption onto activated carbon derived from Persea species, Microchem. J., 130 (2017) 129–136.
  14. T. Tay, S. Ucar, S. Karagöz, Preparation and characterization of activated carbon from waste biomass,
    J. Hazard. Mater., 165 (2009) 481–485.
  15. Y. Liu, P. Liu, L. Li, S. Wang, Z. Pan, C. Song, T. Wang, Fabrication of biomass-derived activated carbon with interconnected hierarchical architecture via H3PO4-assisted KOH activation for high-performance symmetrical supercapacitors, Electroanal. Chem., 903 (2021) 115828, doi: 10.1016/j.jelechem.2021.115828.
  16. J. Bedia, M. Peñas-Garzón, A. Gómez-Avilés, J.J. Rodriguez, C. Belver, Review on activated carbons by chemical activation with FeCl3, Carbon Res., 6 (2020) 21–46.
  17. M. Danish, T. Ahmad, A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application, Renewable Sustainable Energy Rev., 87 (2018) 1–21.
  18. J. Jjagwe, P. Wilberforce Olupot, E. Menya, H. Mpagi Kalibbala, Synthesis and application of granular activated carbon from biomass waste materials for water treatment: a review, J. Bioresour. Bioprod., 6 (2021) 292–322.
  19. B.G.H. Briton, B.K. Yao, Y. Richardson, L. Duclaux, L. Reinert, Y. Soneda, Optimization by using response surface methodology of the preparation from plantain spike of a micro-/mesoporous activated carbon designed for removal of dyes in aqueous solution, Arabian J. Sci. Eng., 45 (2020) 7231–7245.
  20. Y. El Maguana, N. Elhadiri, M. Bouchdoug, M. Benchanaa, Study of the influence of some factors on the preparation of activated carbon from walnut cake using the fractional factorial design, J. Environ. Chem. Eng., 6 (2018) 1093–1099.
  21. G. Jaria, C.P. Silva, J.A.B.P. Oliveira, S.M. Santos, M.V. Gil, M. Otero, V. Calisto, V.I. Esteves, Production of highly efficient activated carbons from industrial wastes for the removal of pharmaceuticals from water—a full factorial design, J. Hazard. Mater., 370 (2019) 212–218.
  22. K. Patidar, M. Vashishtha, Optimization of process variables to prepare mesoporous activated carbon from mustard straw for dye adsorption using response surface methodology, Water Air Soil Pollut., 231 (2020) 526–543.
  23. K. Ennaciri, A. Baçaoui, M. Sergent, A. Yaacoubi, Application of fractional factorial and Doehlert designs for optimizing the preparation of activated carbons from Argan shells, Chemom. Intell. Lab. Syst., 139 (2014) 48–57.
  24. P.P.M. Fung, W.H. Cheung, G. McKay, Systematic analysis of carbon dioxide activation of waste tire by factorial design, Chin. J. Chem. Eng., 20 (2012) 497–504.
  25. S.M. Yakout, G. Sharaf El-Deen, Characterization of activated carbon prepared by phosphoric acid activation of olive stones, Arabian J. Chem., 9 (2016) S1155–S1162.
  26. N. Isoda, R. Rodrigues, A. Silva, M. Gonçalves, D. Mandelli, F.C.A. Figueiredo, W.A. Carvalho, Optimization of preparation conditions of activated carbon from agriculture waste utilizing factorial design, Powder Technol., 256 (2014) 175–181.
  27. A. Kumar, H.M. Jena, Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4, Results Phys., 6 (2016) 651–658.
  28. U.T. Un, F. Ates, N. Erginel, O. Ozcan, E. Oduncu, Adsorption of Disperse Orange 30 dye onto activated carbon derived from Holm Oak (Quercus Ilex) acorns: a 3k factorial design and analysis, J. Environ. Manage., 155 (2015) 89–96.
  29. B.G.H. Briton, B.K. Yao, Y. Richardson, L. Duclaux, L. Reinert, Y. Soneda, Optimization by using response surface methodology of the preparation from plantain spike of a micro-/mesoporous activated carbon designed for removal of dyes in aqueous solution, Arabian J. Sci. Eng., 45 (2020) 7231–7245.
  30. D. Bingol, N. Tekin, M. Alkan, Brilliant Yellow dye adsorption onto sepiolite using a full factorial design, Appl. Clay Sci., 50 (2010) 315–321.
  31. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology, Chem. Eng. J., 137 (2008) 462–470.
  32. S. Saadat, A. Karimi-Jashni, Optimization of Pb(II) adsorption onto modified walnut shells using factorial design and simplex methodologies, Chem. Eng. J., 173 (2011) 743–749.