References

  1. M.N. Khan, D.K. Parmar, D. Das, Recent applications of azo dyes: a paradigm shift from medicinal chemistry to biomedical sciences, Mini-Rev. Med. Chem., 21 (2021) 1071–1084.
  2. Aashima, S. Uppal, A. Arora, S. Gautam, S. Singh, R.J. Choudhary, S.K. Mehta, Magnetically retrievable Ce-doped Fe3O4 nanoparticles as scaffolds for the removal of azo dyes, RSC Adv., 9 (2019) 23129–23141.
  3. P. Aravind, H. Selvaraj, S. Ferro, M. Sundaram, An integrated (electro- and bio-oxidation) approach for remediation of industrial wastewater containing azo-dyes: understanding the degradation mechanism and toxicity assessment, J. Hazard. Mater., 318 (2016) 203–215.
  4. S. Giannakis, K.-Y.A. Lin, F. Ghanbari, A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs), Chem. Eng. J., 406 (2021) 127083, doi: 10.1016/j.cej.2020.127083.
  5. H. Chi, J. Wan, Y. Ma, Y. Wang, S. Ding, X. Li, Ferrous metal–organic frameworks with stronger coordinatively unsaturated metal sites for persulfate activation to effectively degrade dibutyl phthalate in wastewater, J. Hazard. Mater., 377 (2019) 163–171.
  6. F. Ghanbari, M. Moradi, F. Gohari, Degradation of 2,4,6-trichlorophenol in aqueous solutions using peroxymonosulfate/activated carbon/UV process via sulfate and hydroxyl radicals, J. Water Process Eng., 9 (2016) 22–28.
  7. A.A. Babaei, M. Golshan, B. Kakavandi, A heterogeneous photocatalytic sulfate radical-based oxidation process for efficient degradation of 4-chlorophenol using TiO2 anchored on Fe oxides@carbon, Process Saf. Environ. Prot., 149 (2021) 35–47.
  8. M. Noorisepehr, B. Kakavandi, A.A. Isari, F. Ghanbari, E. Dehghanifard, N. Ghomi, F. Kamrani, Sulfate
    radical-based oxidative degradation of acetaminophen over an efficient hybrid system: peroxydisulfate decomposed by ferroferric oxide nanocatalyst anchored on activated carbon and UV light, Sep. Purif. Technol., 250 (2020) 116950, doi: 10.1016/j.seppur.2020.116950.
  9. X. Li, Y. Jia, M. Zhou, L. Ding, X. Su, J. Sun, Degradation of diclofenac sodium by pre-magnetization
    Fe0/persulfate system: efficiency and degradation pathway study, Water Air Soil Pollut., 231 (2020) 311, doi:10.1007/s11270-020-04650-7.
  10. F. Meng, M. Song, B. Song, Y. Wei, Q. Cao, Y. Cao, Enhanced degradation of Rhodamine B via α-Fe2O3 microspheres induced persulfate to generate reactive oxidizing species, Chemosphere, 243 (2020) 125322, doi: 10.1016/j.chemosphere.2019.125322.
  11. Y. Leng, W. Guo, X. Shi, Y. Li, A. Wang, F. Hao, L. Xing, Degradation of Rhodamine B by persulfate activated with Fe3O4: effect of polyhydroquinone serving as an electron shuttle, Chem. Eng. J., 240 (2014) 338–343.
  12. N.K. Gupta, Y. Ghaffari, S. Kim, J. Bae, K.S. Kim, M. Saifuddin, Photocatalytic degradation of organic pollutants over MFe2O4 (M = Co, Ni, Cu, Zn) nanoparticles at neutral pH, Sci. Rep., 10 (2020) 4942,
    doi:10.1038/s41598-020-61930-2.
  13. Mubasher, M. Mumtaz, M. Hassan, L. Ali, Z. Ahmad, M.A. Imtiaz, M.F. Aamir, A. Rehman, K. Nadeem, Comparative study of frequency-dependent dielectric properties of ferrites MFe2O4 (M = Co, Mg, Cr and Mn) nanoparticles, Appl. Phys. A, 126 (2020) 334, doi: 10.1007/s00339-020-03529-y.
  14. R. Dhanda, M. Kidwai, Magnetically separable CuFe2O4/reduced grapheme oxide nanocomposites: as a highly active catalyst for solvent free oxidative coupling of amines to imines, RSC Adv., 6 (2016) 53430–53437.
  15. W. Qin, G. Fang, Y. Wang, D. Zhou, Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: key role of superoxide radicals, Chem. Eng. J., 348 (2018) 526–534.
  16. V. Verma, M. Kaur, S. Sharma, Superoxide dismutase mimic activity of spinel ferrite MFe2O4 (M = Mn, Co and Cu) nanoparticles, Bull. Mater. Sci., 42 (2019) 120, doi: 10.1007/s12034-019-1783-7.
  17. S. Balamurugan, N. Naresh, I. Prakash, N. Satyanarayana, Ion and electron-conducting additive effect on Li-ion charge storage performance of CuFe2O4/SiO2 composite aerogel anode, Ceram. Int., 46 (2020) 25330–25340.
  18. Y. Sohail, A. Liaquat, A. ul Haq, M.F. Zafar, N. Ul-Haq, Impedance spectroscopy and investigation of conduction mechanism in reduced graphene/CuFe2O4 nanocomposites, Appl. Physic. A, 127 (2021) 423, doi:10.1007/s00339-021-04563-0.
  19. I. Othman, M.A. Haija, I. Ismail, J.H. Zain, F. Banat, Preparation and catalytic performance of CuFe2O4 nanoparticles supported on reduced graphene oxide (CuFe2O4/RGO) for phenol degradation, Mater. Chem. Phys., 238 (2019) 121931, doi: 10.1016/j.matchemphys.2019.121931.
  20. D. Karimipourfard, R. Eslamloueyan, N. Mehranbod, Novel heterogeneous degradation of mature landfill leachate using persulfate and magnetic CuFe2O4/RGO nanocatalyst, Process Saf. Environ. Prot., 131 (2019) 212–222.
  21. X. Ma, R. Hao, Z. Wang, P. Xu, Y. Luo, Y. Zhao, Nanoscale CuFe2O4 monodispersedly anchored on reduced graphene oxide as excellent peroxydisulfate catalyst for removal of gaseous elemental mercury, Chem. Eng. J., 401 (2020) 126101, doi: 10.1016/j.cej.2020.126101.
  22. P. Hao, M. Hu, R. Xing, W. Zhou, Synergistic degradation of methylparaben on CuFe2O4-rGO composite by persulfate activation, J. Alloys Compd., 823 (2020) 153757, doi: 10.1016/j. jallcom.2020.153757.
  23. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
  24. U. Holzwarth, N. Gibson, The Scherrer equation versus the ‘Debye-Scherrer equation’, Nat. Nanotechnol., 6 (2011) 534, doi: 10.1038/nnano.2011.145.
  25. H. Gu, X. Chen, F. Chen, X. Zhou, Z. Parsaee, Ultrasoundassisted biosynthesis of CuO-NPs using brown alga Cystoseira trinodis: characterization, photocatalytic AOP, DPPH scavenging and antibacterial investigations, Ultrason. Sonochem., 41 (2018) 109–119.
  26. M. Bagavathi, A. Ramar, R. Saraswathi, Fe3O4–carbon black nanocomposite as a highly efficient counter electrode material for dye-sensitized solar cell, Ceram. Int., 42 (2016) 13190–13198.
  27. H. Dai, S. Xu, J. Chen, X. Miao, J. Zhu, Oxalate enhanced degradation of Orange II in heterogeneous UV-Fenton system catalyzed by Fe3O4@γ-Fe2O3 composite, Chemosphere, 199 (2018) 147–153.
  28. X. Wang, J. Min, S. Li, X. Zhu, X. Cao, S. Yuan, X. Zuo, X. Deng, Sono-assisted synthesis of CuO nanorods–graphene oxide as a synergistic activator of persulfate for bisphenol A removal, J. Environ. Chem. Eng., 6 (2018) 4078–4083.
  29. M.F. Li, Y.G. Liu, S.B. Liu, D. Shu, G.M. Zeng, X.J. Hu, X.F. Tan, L.H. Jiang, Z.L. Yan, X.X. Cai, Cu(II)-influenced adsorption of ciprofloxacin from aqueous solutions by magnetic graphene oxide/nitrilotriacetic acid nanocomposite: competition and enhancement mechanisms, Chem. Eng. J., 319 (2017) 219–228.
  30. X. Zhang, M. Feng, R. Qu, H. Liu, L. Wang, Z. Wang, Catalytic degradation of diethyl phthalate in aqueous solution by persulfate activated with nano-scaled magnetic CuFe2O4/ MWCNTs, Chem. Eng. J., 301 (2016) 1–11.
  31. S. Madihi-Bidgoli, S. Asadnezhad, A. Yaghoot-Nezhad, A. Hassani, Azurobine degradation using Fe2O3@multiwalled carbon nanotube activated peroxymonosulfate (PMS) under UVA-LED irradiation: performance, mechanism and environmental application, J. Environ. Chem. Eng., 9 (2021) 106660, doi:10.1016/j.jece.2021.106660.
  32. L.W. Matzek, K.E. Carter, Activated persulfate for organic chemical degradation: a review, Chemosphere, 151 (2016) 178–188.
  33. S.S. Rezaei, B. Kakavandi, M. Noorisepehr, A.A. Isari, S. Zabih, P. Bashardoust, Photocatalytic oxidation of tetracycline by magnetic carbon-supported TiO2 nanoparticles catalyzed peroxydisulfate: Performance, synergy and reaction mechanism studies, Sep. Purif. Technol., 258 (2021) 117936, doi:10.1016/j.seppur.2020.117936.
  34. M. Moradi, B. Kakavandi, A. Bahadoran, S. Giannakis, E. Dehghanifard, Intensification of persulfate-mediated elimination of bisphenol A by a spinel cobalt ferrite-anchored g-C3N4 S-scheme photocatalyst: catalytic synergies and mechanistic interpretation, Sep. Purif. Technol., 285 (2022) 120313, doi:10.1016/j.seppur.2021.120313.
  35. Z. Li, C. Guo, J. Lyu, Z. Hu, M. Ge, Tetracycline degradation by persulfate activated with magnetic Cu/CuFe2O4 composite: efficiency, stability, mechanism and degradation pathway, J. Hazard. Mater., 373 (2019) 85–96.
  36. Y. Ren, J. Yu, J. Zhang, L. Lv, W. Zhang, An in-situ strategy to analyze multi-effect catalysis in iron-copper bimetals catalyzed Fenton-like processes, Appl. Catal., B, 299 (2021) 120697, doi:10.1016/j.apcatb.2021.120697.
  37. Q. Ma, H. Zhang, X. Zhang, B. Li, R. Guo, Q. Cheng, X. Cheng, Synthesis of magnetic CuO/MnFe2O4 nanocompisite and its high activity for degradation of levofloxacin by activation of persulfate, Chem. Eng. J., 360 (2019) 848–860.
  38. W. Meng, Y. Wang, Y. Zhang, C. Liu, Z. Wang, Z. Song, B. Xu, D.C.W. Tsang, F. Qi, A. Ikhlaq, Degradation Rhodamine B dye wastewater by sulfate radical-based visible light-Fenton mediated by LaFeO3: reaction mechanism and empirical modeling, J. Taiwan Inst. Chem. Eng., 111 (2020) 162–169.
  39. Y. Ma, F. Chen, Q. Yang, Y. Zhong, X. Shu, F. Yao, T. Xie, X. Li, D. Wang, G. Zeng, Sulfate radical induced degradation of Methyl Violet azo dye with CuFe layered doubled hydroxide as heterogeneous photoactivator of persulfate, J. Environ. Manage., 227 (2018) 406–414.
  40. Y. Xu, J. Ai, H. Zhang, The mechanism of degradation of bisphenol A using the magnetically separable
    CuFe2O4/peroxymonosulfate heterogeneous oxidation process, J. Hazard. Mater., 309 (2016) 87–96.
  41. J. Peng, Z Wang, S. Wang, J. Liu, Y. Zhang, B. Wang, Z. Gong, M. Wang, H. Dong, J. Shi, H. Liu, G. Yan, G. Liu, S. Gao, Z. Cao, Enhanced removal of methylparaben mediated by cobalt/carbon nanotubes (Co/CNTs) activated peroxymonosulfate in chloride-containing water: reaction kinetics, mechanisms and pathways, Chem. Eng. J., 409 (2021) 12817, doi: 10.1016/j. cej.2020.128176.
  42. Y. Qi, J. Wei, R. Qu, G. Al-Basher, X. Pan, A.A. Dar, A. Shad, D. Zhou, Z. Wang, Mixed oxidation of aqueous nonylphenol and triclosan by thermally activated persulfate: reaction kinetics and formation of
    co-oligomerization products, Chem. Eng. J., 403 (2021) 126396, doi: 10.1016/j.cej.2020.126396.