References

  1. K.-I. Choi, H.-R. Kim, K.-M. Kim, D. Liu, G. Cao, J.-H. Lee, C2H5OH sensing characteristics of various Co3O4 nanostructures prepared by solvothermal reaction, Sens. Actuators, B, 146 (2010) 183–189.
  2. C. Lavanya, R. Dhankar, S. Chhikara, S. Sheoran, Degradation of toxic dyes: a review, Int. J. Curr. Microbiol. Appl. Sci., 3 (2014) 189–199.
  3. J.-Q. Jiang, The role of coagulation in water treatment, Curr. Opin. Chem. Eng., 8 (2015) 36–44.
  4. Y. Tan, J. Kan, S. Li, Amperometric biosensor for catechol using electrochemical template process, Sens. Actuators, B, 152 (2011) 285–291.
  5. Z. Zhu, R. Rao, Z. Zhao, J. Chen, W. Jiang, F. Bi, Y. Yang, X. Zhang, Research progress on removal of phthalates pollutants from environment, J. Mol. Liq., 355 (2022) 118930, doi: 10.1016/j.molliq.2022.118930.
  6. Y. Wang, R. Wang, N. Lin, J. Xu, X. Liu, N. Liu, X. Zhang, Degradation of norfloxacin by MOF-derived lamellar carbon nanocomposites based on microwave-driven Fenton reaction: improved Fe(III)/Fe(II) cycle, Chemosphere, 293 (2022) 133614, doi: 10.1016/j.chemosphere.2022.133614.
  7. Y. Gong, Y. Wang, N. Lin, R. Wang, M. Wang, X. Zhang, Ironbased materials for simultaneous removal of heavy metal(loid) s and emerging organic contaminants from the aquatic environment: recent advances and perspectives, Environ. Pollut., 299 (2022) 118871, doi: 10.1016/j.envpol.2022.118871.
  8. N. Lin, Y. Gong, R. Wang, Y. Wang, X. Zhang, Critical review of perovskite-based materials in advanced oxidation system for wastewater treatment: design, applications and mechanisms, J. Hazard. Mater., 424 (2022) 127637, doi: 10.1016/j. jhazmat.2021.127637.
  9. A. Akhundi, A. Badiei, G.M. Ziarani, A. Habibi-Yangjeh, M.J. Muñoz-Batista, R. Luque, Graphitic carbon nitride-based photocatalysts: toward efficient organic transformation for value-added chemicals production, Mol. Catal., 488 (2020) 110902(1–14), doi: 10.1016/j.mcat.2020.110902.
  10. S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: a review, J. Cleaner Prod., 276 (2020) 124319(1–19), doi: 10.1016/j.jclepro.2020.124319.
  11. T. Warang, N. Patel, R. Fernandes, N. Bazzanella, A. Miotello, Co3O4 nanoparticles assembled coatings synthesized by different techniques for photo-degradation of methylene blue dye, Appl. Catal., B, 132–133 (2013) 204–211.
  12. W. Chen, B. Han, C. Tian, X. Liu, S. Liang, H. Deng, Z. Lin, MOFs-derived ultrathin holey Co3O4 nanosheets for enhanced visible light CO2 reduction, Appl. Catal., B, 244 (2019) 996–1003.
  13. M. Liang, M. Zhao, H. Wang, F. Wang, X. Song, Excellent cycling stabilities of a novel calliandra-like Co3O4 acted as anode materials for the lithium-ion battery, J. Energy Storage, 17 (2018) 311–317.
  14. M. Long, W. Cai, J. Jun, B. Zhou, X. Chai, Y. Wu, Efficient photocatalytic degradation of phenol over
    Co3O4/BiVO4 composite under visible light irradiation, J. Phys. Chem. B, 110 (2006) 20211–20216.
  15. M. Li, S. Zhang, L. Li, J. Han, X. Zhu, Q. Ge, H. Wang, Construction of highly active and selective polydopamine modified hollow ZnO/Co3O4 p-n heterojunction catalyst for photocatalytic CO2 reduction, ACS Sustainable Chem. Eng., 8 (2020) 11465–11476.
  16. H. Yang, J. Fan, C. Zhou, R. Luo, H. Liu, Y. Wan, J. Zhang, J. Chen, G. Wang, R. Wang, C. Jiang, Co3O4@CdS hollow spheres derived from ZIF-67 with a high phenol and dye photodegradation activity, ACS Omega, 5 (2020) 17160–17169.
  17. Z. Shi, L. Lan, Y. Li, Y. Yang, Q. Zhang, J. Wu, G. Zhang, X. Zhao, Co3O4/TiO2 nanocomposite formation leads to improvement in ultraviolet–visible-infrared-driven thermocatalytic activity due to photoactivation and photocatalysis–thermocatalysis synergetic effect, ACS Sustainable Chem. Eng., 6 (2018) 16503–16514.
  18. S. Phanichphant, A. Nakaruk, K. Chansaenpak, D. Channei, Evaluating the photocatalytic efficiency of the BiVO4/rGO photocatalyst, Sci. Rep., 9 (2019) 16091, doi: 10.1038/s41598-019-52589-5.
  19. P. Riente, M. Fianchini, P. Llanes, M.A. Pericàs, T. Noël, Shedding light on the nature of the catalytically active species in photocatalytic reactions using Bi2O3 semiconductor, Nat. Commun., 12 (2021) 625(1–10), doi:10.1038/s41467-020-20882-x.
  20. M. Arumugam, M.Y. Choi, Recent progress on bismuth oxyiodide (BiOI) photocatalyst for environmental remediation, J. Ind. Eng. Chem., 81 (2020) 237–268.
  21. D. Kang, J.C. Hill, Y. Park, K.-S. Choi, Photoelectrochemical properties and photostabilities of high surface area CuBi2O4 and Ag-doped CuBi2O4 photocathodes, Chem. Mater., 28 (2016) 4331–4340.
  22. T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, K. Sayama, Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation, J. Phys. Chem. C, 111 (2016) 7574–7577.
  23. L. Zhu, P. Basnet, S.R. Larson, L.P. Jones, J.Y. Howe, R.A. Tripp, Y. Zhao, Visible light-induced photoeletrochemical and antimicrobial properties of hierarchical CuBi2O4 by facile hydrothermal synthesis, ChemistrySelect, 1 (2016) 1518–1524.
  24. O.A. Arotiba, B.O. Orimolade, B.A. Koiki, Visible light–driven photoelectrocatalytic semiconductor heterojunction anodes for water treatment applications, Curr. Opin. Electrochem., 22 (2020) 25–34.
  25. Z.S. Chen, A.K.Y. Wong, T.C. Cheng, A.C. Koon, H.Y.E. Chan, FipoQ/FBXO33, a Cullin-1-based ubiquitin ligase complex component modulates ubiquitination and solubility of polyglutamine disease protein, J. Neurochem., 149 (2019) 781–798.
  26. S.P. Berglund, F.F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, R.V.D. Krol, Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting, Chem. Mater., 28 (2016) 4231–4242.
  27. L. Gong, X.Y.E. Chng, Y. Du, S. Xi, B.S. Yeo, Enhanced catalysis of the electrochemical oxygen evolution reaction by iron(III) ions adsorbed on amorphous cobalt oxide, ACS Catal., 8 (2017) 807–814.
  28. F. Ambroz, T.J. Macdonald, V. Martis, I.P. Parkin, Evaluation of the BET theory for the characterization of meso and microporous MOFs, Small Methods, 2 (2018) 1800173, doi: 10.1002/smtd.201800173.
  29. Y. Wang, F. Bi, Y. Wang, M. Jia, X. Tao, Y. Jin, X. Zhang, MOFderived CeO2 supported Ag catalysts for toluene oxidation: the effect of synthesis method, Mol. Catal., 515 (2021) 111922, doi: 10.1016/j.mcat.2021.111922.
  30. X. Zhang, S. Xiang, Q. Du, F. Bi, K. Xie, L. Wang, Effect of calcination temperature on the structure and performance of rod-like MnCeOx derived from MOFs catalysts, Mol. Catal., 522 (2022) 112226, doi:10.1016/j.mcat.2022.112226.
  31. F. Soleimani, M. Salehi, A. Gholizadeh, Comparison of visible light photocatalytic degradation of different pollutants by (Zn, Mg)xCu1–xBi2O4 nanoparticles, Ceram. Int., 45 (2019) 8926–8939.
  32. C.R. Lee, H.S. Kim, I.H. Jang, J.H. Im, N.G. Park, Pseudo-first-order adsorption kinetics of N719 dye on TiO2 surface, ACS Appl. Mater. Interfaces, 3 (2011) 1953–1957.
  33. Z. Mao, W. Liu, H. Cai, J. Shi, Z. Wu, Y. Yang, J. Duan, A kinetic/ thermodynamic study of transparent
    co-adsorbents and colored dye molecules in visible light based on microgravimetric quartzcrystal microbalance on porous TiO2 films for dye-sensitized solar cells, Phys. Chem. Chem. Phys., 22 (2020) 26828–26837.
  34. F. Dong, X. Xiao, G. Jiang, Y. Zhang, W. Cui, J. Ma, Surface oxygen-vacancy induced photocatalytic activity of La(OH)3 nanorods prepared by a fast and scalable method, Phys. Chem. Chem. Phys., 17 (2015) 16058–16066.
  35. H. Lahmar, M. Benamira, F.Z. Akika, M. Trari, Reduction of chromium(VI) on the hetero-system CuBi2O4/TiO2 under solar light, J. Phys. Chem. Solids, 110 (2017) 254–259.
  36. X. Chang, T. Wang, P. Zhang, J.J. Zhang, A. Li, J.L. Gong, Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes, J. Am. Chem. Soc., 137 (2015) 8356–8359.
  37. W. Zhengcui, X. Yejing, Z. Yali, L. Jingjing, C. Tao, SnS2 nanosheet-based microstructures with high adsorption capabilities and visible light photocatalytic activities, R. Soc. Chem., 5 (2015) 24640–24648.
  38. X. Li, B. Jie, H. Lin, Z. Deng, J. Qian, Y. Yang, X. Zhang, Application of sulfate radicals-based advanced oxidation technology in degradation of trace organic contaminants (TrOCs): recent advances and prospects, J. Environ. Manage., 308 (2022) 114664(1–12), doi: 10.1016/j.jenvman.2022.114664.
  39. V.S. Lin, M. Grandbois, K. McNeill, Fluorescent molecular probes for detection of one-electron oxidants photochemically generated by dissolved organic matter, Environ. Sci. Technol., 51 (2017) 9033–9041.