References
- H.T. Vu, B. Min, Enhanced methane fermentation of municipal
sewage sludge by microbial electrochemical systems integrated
with anaerobic digestion, Int. J. Hydrogen Energy, 44 (2019)
30357–30366.
- H. Yoshida, H. Tokumoto, K. Ishii, R. Ishii, Efficient, high-speed
methane fermentation for sewage sludge using subcritical
water hydrolysis as pretreatment, Bioresour. Technol.,
100 (2009) 2933–2939.
- J. Luo, Y. Li, H. Li, Y. Li, L. Lin, Y. Li, W. Huang, J. Cao, Y. Wu,
Deciphering the key operational factors and microbial features
associated with volatile fatty acids production during paper
wastes and sewage sludge co-fermentation, Bioresour. Technol.,
344 (2022) 126318, doi: 10.1016/j.biortech.2021.126318.
- B. Karwowska, E. Sperczyńska, E. Wiśniowska, Characteristics
of reject waters and condensates generated during drying of
sewage sludge from selected wastewater treatment plants,
Desal. Water Treat., 57 (2016) 1176–1183.
- B. Bień, J.D. Bień, Analysis of reject water formed in the mechanical
dewatering process of digested sludge conditioned
by physical and chemical methods, Energies, 15 (2022) 1678,
doi: 10.3390/en15051678.
- M. Czatzkowska, M. Harnisz, E. Korzeniewska, I. Koniuszewska,
Inhibitors of the methane fermentation process with particular
emphasis on the microbiological aspect: a review, Energy
Sci. Eng., 8 (2020) 1880–1897.
- E.H. Sanjaya, H. Cheng, Y.Y. Li, Mesophilic methane fermentation
performance and ammonia inhibition of fish processing
wastewater treatment using a self-agitated anaerobic
baffled reactor, Bioresour. Technol., 313 (2020) 123644,
doi: 10.1016/j.biortech.2020.123644.
- L. Tan, Q.-S. Cheng, Z.-Y. Sun, Y.-Q. Tang, K. Kida, Effects of
ammonium and/or sulfide on methane production from acetate
or propionate using biochemical methane potential tests,
J. Biosci. Bioeng., 127 (2019) 345–352.
- W. Liu, H. Yang, J. Ye, J. Luo, Y.Y. Li, J. Liu, Short-chain fatty
acids recovery from sewage sludge via acidogenic fermentation
as a carbon source for denitrification: a review, Bioresour.
Technol., 311 (2020) 123446, doi:10.1016/j.biortech.2020.123446.
- Q. Guo, S. Majeed, R. Xu, K. Zhang, A. Kakade, A. Khan,
F.Y. Hafeez, C. Mao, P. Liu, X. Li, Heavy metals interact with the
microbial community and affect biogas production in anaerobic
digestion: a review, J. Environ. Manage., 240 (2019) 266–272.
- B. Macherzyński, M. Włodarczyk-Makuła, A. Nowacka,
Desorption of PAHs from solid phase into liquid phase during
co-fermentation of municipal and coke sewage, Desal. Water
Treat., 52 (2014) 3859–3870.
- Z. Sadecka, Toksyczność w procesie beztlenowej stabilizacji
komunalnych osadów ściekowych, Monographs of the
Environmental Engineering Committee, Polish Academy of
Sciences, Zielona Góra, 2013 (in Polish).
- D. Boruszko, Research on the influence of anaerobic
stabilization of various dairy sewage sludge on biodegradation
of polycyclic aromatic hydrocarbons PAHs with the use of
effective microorganisms., Environ. Res., 155 (2017) 344–352.
- B. Macherzyński, M. Włodarczyk-Makuła, B. Skowron-Grabowska, M. Starostka-Patyk, Degradation of PCBs in sewage
sludge during methane fermentation process concerning
environmental management, Desal. Water Treat., 57 (2016)
1163–1175.
- Z. Sadecka, S. Myszograj, A. Sieciechowicz, E. Płuciennik-
Koropczuk, M. Włodarczyk-Makuła, Impact of selected
insecticides on the anaerobic stabilization of municipal sewage
sludge, Desal. Water Treat., 57 (2016) 1213–1222.
- P. Rusanowska, M. Harnisz, M. Zieliński, M. Dębowski,
E. Korzeniewska, M. Kisielewska, E. Amenda, Individual
and synergistic effects of metronidazole, amoxicillin, and
ciprofloxacin on methane fermentation with sewage sludge,
CLEAN–Soil, Air, Water, 48 (2020) 1900281, doi: 10.1002/clen.201900281.
- E. Ferrarese, G. Andreottola, I.A. Oprea, Remediation of PAH-contaminated
sediments by chemical oxidation,
J. Hazard.
Mater., 152 (2008) 128–139.
- K. Joa, E. Panova, N. Irha, E. Teinemaa, J. Lintelmann, U. Kirso,
Determination of polycyclic aromatic hydrocarbons (PAHs) in
oil shale processing wastes: current practice and new trends,
Oil Shale, 26 (2009) 52–79.
- A. Mrozik, Z. Piotrowska-Seget, S. Łabużek, Bacterial
degradation and bioremediation of polycyclic aromatic
hydrocarbons, Pol. J. Environ. Stud., 12 (2003) 15–25.
- B. Macherzyński, M. Włodarczyk-Makuła, D. Wojewódka,
Control of PAHs degradation process under reducing
conditions, Desal. Water Treat., 117 (2018) 290–300.
- Q. Aemig, C. Chéron, N. Delgenès, J. Jimenez, S. Houot,
J.-P. Steyer, D. Patureau, Distribution of polycyclic aromatic
hydrocarbons (PAHs) in sludge organic matter pools as a
driving force of their fate during anaerobic digestion, Waste
Manage., 48 (2016) 389–396.
- A.B. Patel, S. Shaikh, K.R. Jain, C. Desai, D. Madamwar,
Polycyclic aromatic hydrocarbons: sources, toxicity, and
remediation approaches, Front. Microbiol., 2675 (2020) 562813,
doi: 10.3389/fmicb.2020.562813.
- D. Ghosal, S. Ghosh, T.K. Dutta, Y. Ahn, Current state of
knowledge in microbial degradation of polycyclic aromatic
hydrocarbons (PAHs): a review, Front. Microbiol., 1369 (2016)
1369, doi:10.3389/fmicb.2016.01369.
- A. Gusev, N. Batrakova, Assessment of PAH Pollution Levels,
Key Sources and Trends: Contribution to Analysis of the Effectiveness
of the POPs Protocol, Meteorological Synthesizing
Centre East – MSC-E (EMEP), Technical Report, 2020.
- B. Macherzyński, A. Nowacka, M. Włodarczyk-Makuła, Simplification
of the procedure of preparing samples for PAHs and
PCBs determination, Arch. Environ. Prot., 4 (2012) 23–33.