References

  1. H.T. Vu, B. Min, Enhanced methane fermentation of municipal sewage sludge by microbial electrochemical systems integrated with anaerobic digestion, Int. J. Hydrogen Energy, 44 (2019) 30357–30366.
  2. H. Yoshida, H. Tokumoto, K. Ishii, R. Ishii, Efficient, high-speed methane fermentation for sewage sludge using subcritical water hydrolysis as pretreatment, Bioresour. Technol., 100 (2009) 2933–2939.
  3. J. Luo, Y. Li, H. Li, Y. Li, L. Lin, Y. Li, W. Huang, J. Cao, Y. Wu, Deciphering the key operational factors and microbial features associated with volatile fatty acids production during paper wastes and sewage sludge co-fermentation, Bioresour. Technol., 344 (2022) 126318, doi: 10.1016/j.biortech.2021.126318.
  4. B. Karwowska, E. Sperczyńska, E. Wiśniowska, Characteristics of reject waters and condensates generated during drying of sewage sludge from selected wastewater treatment plants, Desal. Water Treat., 57 (2016) 1176–1183.
  5. B. Bień, J.D. Bień, Analysis of reject water formed in the mechanical dewatering process of digested sludge conditioned by physical and chemical methods, Energies, 15 (2022) 1678, doi: 10.3390/en15051678.
  6. M. Czatzkowska, M. Harnisz, E. Korzeniewska, I. Koniuszewska, Inhibitors of the methane fermentation process with particular emphasis on the microbiological aspect: a review, Energy Sci. Eng., 8 (2020) 1880–1897.
  7. E.H. Sanjaya, H. Cheng, Y.Y. Li, Mesophilic methane fermentation performance and ammonia inhibition of fish processing wastewater treatment using a self-agitated anaerobic baffled reactor, Bioresour. Technol., 313 (2020) 123644, doi: 10.1016/j.biortech.2020.123644.
  8. L. Tan, Q.-S. Cheng, Z.-Y. Sun, Y.-Q. Tang, K. Kida, Effects of ammonium and/or sulfide on methane production from acetate or propionate using biochemical methane potential tests, J. Biosci. Bioeng., 127 (2019) 345–352.
  9. W. Liu, H. Yang, J. Ye, J. Luo, Y.Y. Li, J. Liu, Short-chain fatty acids recovery from sewage sludge via acidogenic fermentation as a carbon source for denitrification: a review, Bioresour. Technol., 311 (2020) 123446, doi:10.1016/j.biortech.2020.123446.
  10. Q. Guo, S. Majeed, R. Xu, K. Zhang, A. Kakade, A. Khan, F.Y. Hafeez, C. Mao, P. Liu, X. Li, Heavy metals interact with the microbial community and affect biogas production in anaerobic digestion: a review, J. Environ. Manage., 240 (2019) 266–272.
  11. B. Macherzyński, M. Włodarczyk-Makuła, A. Nowacka, Desorption of PAHs from solid phase into liquid phase during co-fermentation of municipal and coke sewage, Desal. Water Treat., 52 (2014) 3859–3870.
  12. Z. Sadecka, Toksyczność w procesie beztlenowej stabilizacji komunalnych osadów ściekowych, Monographs of the Environmental Engineering Committee, Polish Academy of Sciences, Zielona Góra, 2013 (in Polish).
  13. D. Boruszko, Research on the influence of anaerobic stabilization of various dairy sewage sludge on biodegradation of polycyclic aromatic hydrocarbons PAHs with the use of effective microorganisms., Environ. Res., 155 (2017) 344–352.
  14. B. Macherzyński, M. Włodarczyk-Makuła, B. Skowron-Grabowska, M. Starostka-Patyk, Degradation of PCBs in sewage sludge during methane fermentation process concerning environmental management, Desal. Water Treat., 57 (2016) 1163–1175.
  15. Z. Sadecka, S. Myszograj, A. Sieciechowicz, E. Płuciennik- Koropczuk, M. Włodarczyk-Makuła, Impact of selected insecticides on the anaerobic stabilization of municipal sewage sludge, Desal. Water Treat., 57 (2016) 1213–1222.
  16. P. Rusanowska, M. Harnisz, M. Zieliński, M. Dębowski, E. Korzeniewska, M. Kisielewska, E. Amenda, Individual and synergistic effects of metronidazole, amoxicillin, and ciprofloxacin on methane fermentation with sewage sludge, CLEAN–Soil, Air, Water, 48 (2020) 1900281, doi: 10.1002/clen.201900281.
  17. E. Ferrarese, G. Andreottola, I.A. Oprea, Remediation of PAH-contaminated sediments by chemical oxidation,
    J. Hazard. Mater., 152 (2008) 128–139.
  18. K. Joa, E. Panova, N. Irha, E. Teinemaa, J. Lintelmann, U. Kirso, Determination of polycyclic aromatic hydrocarbons (PAHs) in oil shale processing wastes: current practice and new trends, Oil Shale, 26 (2009) 52–79.
  19. A. Mrozik, Z. Piotrowska-Seget, S. Łabużek, Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons, Pol. J. Environ. Stud., 12 (2003) 15–25.
  20. B. Macherzyński, M. Włodarczyk-Makuła, D. Wojewódka, Control of PAHs degradation process under reducing conditions, Desal. Water Treat., 117 (2018) 290–300.
  21. Q. Aemig, C. Chéron, N. Delgenès, J. Jimenez, S. Houot, J.-P. Steyer, D. Patureau, Distribution of polycyclic aromatic hydrocarbons (PAHs) in sludge organic matter pools as a driving force of their fate during anaerobic digestion, Waste Manage., 48 (2016) 389–396.
  22. A.B. Patel, S. Shaikh, K.R. Jain, C. Desai, D. Madamwar, Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches, Front. Microbiol., 2675 (2020) 562813, doi: 10.3389/fmicb.2020.562813.
  23. D. Ghosal, S. Ghosh, T.K. Dutta, Y. Ahn, Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review, Front. Microbiol., 1369 (2016) 1369, doi:10.3389/fmicb.2016.01369.
  24. A. Gusev, N. Batrakova, Assessment of PAH Pollution Levels, Key Sources and Trends: Contribution to Analysis of the Effectiveness of the POPs Protocol, Meteorological Synthesizing Centre East – MSC-E (EMEP), Technical Report, 2020.
  25. B. Macherzyński, A. Nowacka, M. Włodarczyk-Makuła, Simplification of the procedure of preparing samples for PAHs and PCBs determination, Arch. Environ. Prot., 4 (2012) 23–33.