References

  1. A. Abu Hanieh, M. Karaeen, A. Hasan, Towards a sustainability model for olive sector in Palestine, Procedia Manuf., 43 (2020) 269–276.
  2. I.N. Therios, Olives, CABI, Oxfordshire, UK, 2009.
  3. A. Loumou, C. Giourga, Olive groves: “the life and identity of the Mediterranean”, Agric. Hum. Values, 20 (2003) 87–95.
  4. J.A. Gomez, M. Amato, G. Celano, G.C. Koubouris, Organic olive orchards on sloping land: more than a specialty niche production system?, J. Environ. Manage., 89 (2008) 99–109.
  5. M. Moriondo, R. Ferrise, G. Trombi, L. Brilli, C. Dibari, M. Bindi, Modelling olive trees and grapevines in a changing climate, Environ. Modell. Software, 72 (2015) 387–401.
  6. F. Orlandi, E. Avolio, T. Bonofiglio, S. Federico, B. Romano, M. Fornaciari, Potential shifts in olive flowering according to climate variations in Southern Italy, Meteorol. Appl., 20 (2012) 497–503.
  7. M. Moriondo, G. Trombi, R. Ferrise, G. Brandani, C. Dibari, C.M. Ammann, M.M. Lippi, M. Bindi, Olive trees as bioindicators of climate evolution in the Mediterranean Basin, Global Ecol. Biogeogr., 22 (2013) 818–833.
  8. A. Palliotti, G. Bongi, Freezing injury in the olive leaf and effects of mefluidide treatment, J. Hortic. Sci., 71 (1996) 57–63.
  9. L.O. Fresco, Agriculture in the Lower Guadalhorce Valley. Sustainable Land Use. Practical Guide for the Alora Region, Spain, Agricultural University, Wageningen, 1996.
  10. D.J. Connor, E. Fereres, The physiology of adaptation and yield expression in olive, Hortic. Rev., 31 (2005) 155–229.
  11. FAOSTAT, Statistical Dataset, Food and Agriculture Organization of the United Nations, Rome, 2018.
  12. FAO, 2050: A Third More Mouths to Feed, Food and Agriculture Organization, Available at: http://www.fao.org/news/story/en/ item/35571/icode/
  13. K. Teka, M. Haftu, Land suitability characterization for crop and fruit production in midlands of Tigray, Ethiopia, Momona Ethiopian J. Sci., 4 (2012) 64–76.
  14. J. Kihoro, N.J. Bosco, H. Murage, Suitability analysis for rice growing sites using a multi-criteria evaluation and GIS approach in great Mwea region, Kenya, SpringerPlus, 2 (2013) 265–274.
  15. M.M. Islam, T. Ahamed, R. Noguchi, Land suitability and insurance premiums: a GIS-based multi-criteria analysis approach for sustainable rice production, Sustainability, 10 (2018) 1759, doi: 10.3390/su10061759.
  16. J. Malczewski, GIS-based land-use suitability analysis: a critical overview, Prog. Plan., 62 (2004) 3–65.
  17. M.G. Collins, F.R. Steiner, M.J. Rushman, Land-use suitability analysis in the United States: historical development and promising technological achievements, Environ. Manage., 28 (2001) 611–621.
  18. M. Elaalem, Comparison of parametric and fuzzy multicriteria methods for evaluating land suitability for olive in Jeffara Plain of Libya, APCBEE Procedia, 5 (2013) 405–409.
  19. J.C. Halder, Land suitability assessment for crop cultivation by using remote sensing and GIS, J. Geogr. Geol., 5 (2013) 65–74.
  20. S. Bandyopadhyay, R.K. Jaiswal, V.S. Hegde, V. Jayaraman, Assessment of land suitability potentials for agriculture using a remote sensing and GIS-based approach, Int. J. Remote Sens., 30 (2009) 879–895.
  21. A.M. Saleh, A.B. Belal, E.S. Mohamed, Land resources assessment of El-Galaba Basin, South Egypt for the potentiality of agriculture expansion using remote sensing and GIS techniques, Egypt, J. Remote Sens. Space Sci., 18 (2015) 19–30.
  22. F. Joerin, M. Thérialult, A. Musy, Using GIS and outranking multicriteia analysis for land-use suitability assessment, Int. J. Geogr. Inf. Sci., 15 (2001) 153–174.
  23. P. Kandel, A.P. Gautam, S. Shahnawaz, P. Thani, Suitable site selection for plantation of olive by using multi-criteria analysis along with GIS in ten mountainous districts of Northwestern Nepal, Int. Res. J. Earth Sci., 6 (2018) 1–8.
  24. D. Arslan, Y. Karabekir, M. Schreiner, Variations of phenolic compounds, fatty acids and some qualitative characteristics of Sarıulak olive oil as induced by growing area, Food Res. Int., 54 (2013) 1897–1906.
  25. A. Bajoub, E. Hurtado-Fernández, E.A. Ajal, A. Fernández- Gutiérrez, A. Carrasco-Pancorbo, N. Ouazzani, Quality and chemical profiles of monovarietal north Moroccan olive oils from “Picholine Marocaine” cultivar: registration database development and geographical discrimination, Food Chem., 179 (2015) 127–136.
  26. MoLG, Geographical Information Management System in Palestine (GeoMOLG), Ministry of Local Government, Ramallah, 2022.
  27. PCBS, Final Result of Population, Housing, and Establishment Census, Palestinian Central Bureau of Statistics, Ramallah, 2017.
  28. UNEP, Desk Study on the Environment in the Occupied Palestinian Territories, United Nation Environment Programme, Nairobi, 2003.
  29. ARIJ, Status of the Environment in the State of Palestine, Applied Research Institute – Jerusalem, Bethlehem, 2015.
  30. S. Shadeed, Spatio-temporal drought analysis in arid and semiarid regions: a case study from Palestine, Arabian J. Sci. Eng., 38 (2012) 2303–2313.
  31. PWA, Status Report of Water Resources in the Occupied State of Palestine, Palestinian Water Authority, Ramallah, 2013.
  32. HEC, GIS Database, Hydro-Engineering Consultancy, Ramallah, 2018.
  33. MoA, GIS-based Database, Ministry of Agriculture, Ramallah, 2017.
  34. PCBS, Agricultural Census 2010, Final Results-Palestinian Territory, Palestinian Central Bureau of Statistics, Ramallah, 2011.
  35. PCBS and MoA, Olive Presses Survey 2019-Main Results, Palestinian Central Bureau of Statistics, Ministry of Agriculture, Ramallah, 2020.
  36. B. Hossen, H. Yabar, T. Mizunoya, Land suitability assessment for pulse (Green Gram) production through remote sensing, GIS and multi-criteria analysis in the coastal region of Bangladesh, Sustainability, 13 (2021) 12360.
  37. V. Ferretti, S. Pomarico, An integrated approach for studying the land suitability for ecological corridors through spatial multi-criteria evaluations, Environ. Dev. Sustain., 15 (2013) 859–885.
  38. A. Rikalovic, I. Cosic, D. Lazarevic, GIS-based multi-criteria analysis for industrial site selection, Procedia Eng., 69 (2014) 1054–1063.
  39. E. Triantaphyllou, S.H. Mann, Using the analytic hierarchy process for decision making in engineering applications: some challenges, Int. J. Ind. Eng., 2 (1995) 35–44.
  40. J.L. Yang, G. Tzeng, An integrated MCDM technique combined with DEMATEL for a novel cluster-weighted with ANP method, Expert Syst. Appl., 38 (2011) 1417–1424.
  41. S.R. Khodashenas, N. Yarahmadi, Storage dam’s locality placing by MCDM techniques (case study: three dams in Iran), Arabian J. Geosci., 9 (2016) 612.
  42. S.L. Si, X.Y. You, H.C. Liu, P. Zhang, DEMATEL technique: a systematic review of the state-of-the-art literature on methodologies and applications, Math. Probl. Eng., 2018 (2018) 1–33.
  43. X. Zhou, Y. Hu, Y. Deng, F.T. Chan, A. Ishizaka, A DEMATELbased completion method for incomplete pairwise comparison matrix in AHP, Ann. Oper. Res., 271 (2018) 1045–1066.
  44. B. Feizizadeh, T. Blaschke, Land suitability analysis for Tabriz County, Iran: a multi-criteria evaluation approach using GIS, J. Environ. Plann. Manage., 1 (2012) 1–23.
  45. S. Shadeed, T. Judeh, M. Riksen, Rainwater harvesting for sustainable agriculture in high water poor areas in the West Bank, Palestine, Water, 12 (2020) 380.
  46. PMD, Climatic Information, Palestine Metrological Department, Ramallah, 2022.
  47. T.L. Saaty, The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, McGraw-Hill, New York, 1980.
  48. J. Malczewski, GIS and Multi-Criteria Decision Analysis, Wiley, New York, 1999.
  49. C. Sys, E. Ranst, J. Debaveye, Land Evaluation, Part 3: Crop Requirement, Agricultural Publications No. 7, Brussels, 1993.