References

  1. H. Kroiss, What is the potential for utilizing the resources in sludge?, Water Sci. Technol., 49 (2004) 1–10.
  2. A. Gherghel, C. Teodosiu, S. De Gisi, A review on wastewater sludge valorisation and its challenges in the context of circular economy, J. Cleaner Prod., 228 (2019) 244–263.
  3. L. Leng, W. Zhang, S. Leng, J. Chen, L. Yang, H. Li, S. Jiang, H. Huang, Bioenergy recovery from wastewater produced by hydrothermal processing biomass: progress, challenges, and opportunities, Sci. Total Environ., 748 (2020) 142383, doi: 10.1016/j.scitotenv.2020.142383.
  4. B. Zhang, Z. Zhao, N. Chen, C. Feng, Z. Lei, Z. Zhang, Insight into efficient phosphorus removal/recovery from enhanced methane production of waste activated sludge with chitosan-Fe supplementation, Water Res., 187 (2020) 116427, doi: 10.1016/j.watres.2020.116427.
  5. W. Liu, H. Yang, J. Ye, J. Luo, Y.Y. Li, J. Liu, Short-chain fatty acids recovery from sewage sludge via acidogenic fermentation as a carbon source for denitrification: a review, Bioresour. Technol., 311 (2020) 1–10.
  6. C.M. Schambeck, B.S. Magnus, L.C.R. de Souza, W.R.M. Leite, N. Derlon, L.B. Guimarães, R.H.R. da Costa, Biopolymers recovery: dynamics and characterization of alginate-like exopolymers in an aerobic granular sludge system treating municipal wastewater without sludge inoculum, J. Environ. Manage., 263 (2020) 1–11.
  7. J.F.J. Chimuca, J.T. de Sousa, W.S. Lopes, V.D. Leite, C.S.A. do Canto, Decentralized treatment of domestic sewage in dynamic membrane bioreactor, Desal. Water Treat., 197 (2020) 76–89.
  8. J.T. de Sousa, M.L.D. de Luna, I.N. Henrique, V.D. Leite, W.S. Lopesa, H.W. Pearsona, Compact sewage treatment systems for rural sanitation, J. Urban Environ. Eng., 14 (2020) 78–86.
  9. T. Tobin, R. Gustafson, R. Bura, H.L. Gough, Integration of wastewater treatment into process design of lignocellulosic biorefineries for improved economic viability, Biotechnol. Biofuels, 13 (2020) 1–17.
  10. B. Ilmas, K.A. Mir, S. Khalid, Greenhouse gas emissions from the waste sector: a case study of Rawalpindi in Pakistan, Carbon Manage., 9 (2018) 645–654.
  11. L. Appels, J. Baeyens, J. Degrève, R. Dewil, Principles and potential of the anaerobic digestion of waste-activated sludge, Prog. Energy Combust. Sci., 34 (2008) 755–781.
  12. F.J. Maciel, J.F.T. Jucá, Biogas recovery in an experimental MSW cell in Brazil: lessons learned and recommendations for CDM projects, Greenhouse Gas Meas. Manage., 2 (2012) 186–197.
  13. M. Ramos-Suarez, Y. Zhang, V. Outram, Current perspectives on acidogenic fermentation to produce volatile fatty acids from waste, Rev. Environ. Sci. Biotechnol., 20 (2021) 439–478.
  14. P. Neumann, S. Pesante, M. Venegas, G. Vidal, Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge, Rev. Environ. Sci. Biotechnol., 15 (2016) 173–211.
  15. D.C. Stuckey, P.L. McCarty, The effect of thermal pretreatment on the anaerobic biodegradability and toxicity of waste activated sludge, Water Res., 18 (1984) 1343–1353.
  16. G.P. Sheng, H.Q. Yu, Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy, Water Res., 40 (2006) 1233–1239.
  17. Y.-K. Cheah, C. Vidal-Antich, J. Dosta, J. Mata-Álvarez, Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH, Environ. Sci. Pollut. Res., 26 (2019) 35509–35522.
  18. L. Lin, R.-h. Li, Y. Li, J. Xu, X.-y. Li, Recovery of organic carbon and phosphorus from wastewater
    by Fe-enhanced primary sedimentation and sludge fermentation, Process Biochem., 54 (2017) 135–139.
  19. H. Liu, H. Xiao, B. Yin, Y. Zu, H. Liu, B. Fu, H. Ma, Enhanced volatile fatty acid production by a modified biological pretreatment in anaerobic fermentation of waste activated sludge, Chem. Eng. J., 284 (2016) 194–201.
  20. W. Bi, Y. Li, Y. Hu, Recovery of phosphorus and nitrogen from alkaline hydrolysis supernatant of excess sludge by magnesium ammonium phosphate, Bioresour. Technol., 166 (2014) 1–8.
  21. Y. Li, Y. Hu, G. Wang, W. Lan, J. Lin, Q. Bi, H. Shen, S. Liang, Screening pretreatment methods for sludge disintegration to selectively reclaim carbon source from surplus activated sludge, Chem. Eng. J., 255 (2014) 365–371.
  22. X. Wang, Y. Li, Y. Zhang, Y. Rong Pan, L. Li, J. Liu, D. Butler, Stepwise pH control to promote synergy of chemical and biological processes for augmenting short-chain fatty acid production from anaerobic sludge fermentation, Water Res., 155 (2019) 193–203.
  23. H. Liu, P. Han, H. Liu, G. Zhou, B. Fu, Z. Zheng, Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater, Bioresour. Technol., 260 (2018) 105–114.
  24. B. Xiao, C. Liu, J. Liu, X. Guo, Evaluation of the microbial cell structure damages in alkaline pretreatment of waste activated sludge, Bioresour. Technol., 196 (2015) 109–115.
  25. W. Fang, P. Zhang, G. Zhang, S. Jin, D. Li, M. Zang, X. Xu, Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization, Bioresour. Technol., 168 (2014) 167–172.
  26. Y. Chen, X. Jiang, K. Xiao, N. Shen, R.J. Zeng, Y. Zhou, Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase – investigation on dissolved organic matter transformation and microbial community shift, Water Res., 112 (2017) 261–268.
  27. R. Wang, Y. Li, W. Chen, J. Zou, Y. Chen, Phosphate release involving PAOs activity during anaerobic fermentation of EBPR sludge and the extension of ADM1, Chem. Eng. J., 287 (2016) 436–447.
  28. H. Pang, X. Pan, L. Li, J. He, Y. Zheng, F. Qu, Y. Ma, B. Cui, J. Nan,Y. Liu, An innovative alkaline protease-based pretreatment approach for enhanced short-chain fatty acids production via a short-term anaerobic fermentation of waste activated sludge, Bioresour. Technol., 312 (2020) 1–9.
  29. H. Carrère, C. Dumas, A. Battimelli, D.J. Batstone, J.P. Delgenès, J.P. Steyer, I. Ferrer, Pretreatment methods to improve sludge anaerobic degradability: a review, J. Hazard. Mater., 183 (2010) 1–15.
  30. A. Gonzalez, A.T.W.M. Hendriks, J.B. van Lier, M. de Kreuk, Pre-treatments to enhance the biodegradability of waste activated sludge: elucidating the rate limiting step, Biotechnol. Adv., 36 (2018) 1434–1469.
  31. J. Liu, S. Deng, B. Qiu, Y. Shang, J. Tian, A. Bashir, X. Cheng, Comparison of pretreatment methods for phosphorus release from waste activated sludge, Chem. Eng. J., 368 (2019) 754–763.
  32. Y. Yan, L. Feng, C. Zhang, C. Wisniewski, Q. Zhou, Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0, Water Res., 44 (2010) 3329–3336.
  33. J. Zhao, D. Wang, Y. Liu, H.H. Ngo, W. Guo, Q. Yang, X. Li, Novel stepwise pH control strategy to improve short chain fatty acid production from sludge anaerobic fermentation, Bioresour. Technol., 249 (2018) 431–438.
  34. A. Omoike, J. Chorover, Spectroscopic study of extracellular polymeric substances from Bacillus subtilis: aqueous chemistry and adsorption effects, Biomacromolecules, 5 (2004) 1219–1230.
  35. G.P. Sheng, H.Q. Yu, Z. Yu, Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila, Appl. Microbiol. Biotechnol., 67 (2005) 125–130.
  36. C.Y. Gomec, R.E. Speece, The role of pH in the organic material solubilization of domestic sludge in anaerobic digestion, Water Sci. Technol., 48 (2003) 143–150.
  37. D. Zhang, X. Li, S. Jia, L. Dai, J. Zhao, Y. Chen, X. Dai, A review: factors affecting excess sludge anaerobic digestion for volatile fatty acids production, Water Sci. Technol., 72 (2015) 678–688.
  38. J. Wang, H. Liu, B. Fu, K. Xu, J. Chen, Trophic link between syntrophic acetogens and homoacetogens during the anaerobic acidogenic fermentation of sewage sludge, Biochem. Eng. J., 70 (2013) 1–8.
  39. A.C. van Haandel, J. van der Lubbe, Handbook Biological Wastewater Treatment. Design and Optimisation of Activated Sludge Systems, 2nd ed., IWA Publishing, London, 2012.
  40. I.N. Henrique, J.T. de Sousa, B.S.O. de Ceballos, D.P. Brasil, Biological phosphorus removal in sequencing batch reactors with different solid retention times, Eng. Sanit. Ambient., 15 (2010) 197–204.
  41. T.A.T. de Sousa, F.P. do Monte, J.V.N. Silva, W.S. Lopes, V.D. Leite, J.B. van Lier, J.T. de Sousa, Alkaline and acid solubilisation of waste activated sludge, Water Sci. Technol., 83 (2021) 2980–2996.
  42. X. Ma, J. Ye, L. Jiang, L. Sheng, J. Liu, Y.Y. Li, Z.P. Xu, Alkaline fermentation of waste activated sludge with calcium hydroxide to improve short-chain fatty acids production and extraction efficiency via layered double hydroxides, Bioresour. Technol., 279 (2019) 117–123.
  43. R. de O. Ramos, T.L.Q. de Albuquerque, W.S. Lopes, Sistema de monitoramento on-line de biorreatores (SISMOBIO), 2020.
  44. C. Holliger, M. Alves, D. Andrade, I. Angelidaki, S. Astals, U. Baier, C. Bougrier, P. Buffière, M. Carballa,
    V. de Wilde, F. Ebertseder, B. Fernández, E. Ficara, I. Fotidis, J.C. Frigon, H.F. de Laclos, D.S.M. Ghasimi, G. Hack, M. Hartel, J. Heerenklage, I.S. Horvath, P. Jenicek, K. Koch, J. Krautwald, J. Lizasoain, J. Liu, L. Mosberger,
    M. Nistor, H. Oechsner, J.V. Oliveira, M. Paterson, A. Pauss, S. Pommier, I. Porqueddu, F. Raposo, T. Ribeiro,
    F.R. Pfund, S. Strömberg, M. Torrijoset, M. van Eekert, J. van Lier, H. Wedwitschka, I. Wierinck, Towards a standardization of biomethane potential tests, Water Sci. Technol., 74 (2016) 2515–2522.
  45. L. Jiunn-Jyi, L. Yu-You, T. Noike, Influences of pH and moisture content on the methane production in high-solids sludge digestion, Water Res., 31 (1997) 1518–1524.
  46. L. Bridgewater, American Public Health Association, American Water Works Association, and Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, 22nd ed., 2012.
  47. B. Frølund, T. Griebe, P.H. Nielsen, Enzymatic activity in the activated-sludge floc matrix, Appl. Microbiol. Biotechnol., 43 (1995) 755–761.
  48. M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric method for determination of sugars and related substances, Anal. Chem., 28 (1956) 350–356.
  49. H. Ma, X. Chen, H. Liu, H. Liu, B. Fu, Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: alkaline or neutral pH?, Waste Manage., 48 (2016) 397–403.
  50. X. Li, Y. Peng, B. Li, C. Wu, L. Zhang, Y. Zhao, Effects of alkali types on waste activated sludge (WAS) fermentation and microbial communities, Chemosphere, 186 (2017) 864–872.
  51. Y. Gao, Y. Peng, J. Zhang, S. Wang, J. Guo, L. Ye, Biological sludge reduction and enhanced nutrient removal in a pilotscale system with 2-step sludge alkaline fermentation and A2O process, Bioresour. Technol., 102 (2011) 4091–4097.
  52. D. Wang, Y. Liu, H.H. Ngo, C. Zhang, Q. Yang, L. Peng, D. He, G. Zeng, Xi. Lie, Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation, Bioresour. Technol., 238 (2017) 343–351.
  53. X. Guo, J. Liu, B. Xiao, Evaluation of the damage of cell wall and cell membrane for various extracellular polymeric substance extractions of activated sludge, J. Biotechnol., 188 (2014) 130–135.
  54. D.-c. Xu, C.-q. Zhong, K.-h. Yin, S.-h. Peng, T.-t. Zhu, G. Cheng, Alkaline solubilization of excess mixed sludge and the recovery of released phosphorus as magnesium ammonium phosphate, Bioresour. Technol., 249 (2017) 783–790.
  55. H. Li, C. Li, W. Liu, S. Zou, Optimized alkaline pretreatment of sludge before anaerobic digestion, Bioresour. Technol., 123 (2012) 189–194.
  56. W. Wonglertarak, B. Wichitsathian, Alkaline pretreatment of waste activated sludge in anaerobic digestion, J. Clean Energy Technol., 2 (2014) 118–121.
  57. K.D.S. do Ó, T.A.T. de Sousa, I.N. Henrique, V.D. Leite, R. de O. Ramos, J.T. de Sousa, Assessing of alkaline and enzymatic pre-treatment: comparison as WAS solubilisation process to maximize its potential as carbonaceous source, Biomass Convers. Biorefin., (2021) 1–12, doi: 10.1007/s13399-021-01834-x.
  58. H.C. Flemming, J. Wingender, The biofilm matrix, Nat. Rev. Microbiol., 8 (2010) 623–633.
  59. G.P. Sheng, H.Q. Yu, X.Y. Li, Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review, Biotechnol. Adv., 28 (2010) 882–894.
  60. G. Su, M. Huo, Z. Yuan, S. Wang, Y. Peng, Hydrolysis, acidification and dewaterability of waste activated sludge under alkaline conditions: combined effects of NaOH and Ca(OH)2, Bioresour. Technol., 136 (2013) 237–243.
  61. Y. Chen, A.A. Randall, T. McCue, The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid, Water Res., 38 (2004) 27–36.
  62. H. Wu, D. Yang, Q. Zhou, Z. Song, The effect of pH on anaerobic fermentation of primary sludge at room temperature, J. Hazard. Mater., 172 (2009) 196–201.
  63. L. Feng, Y. Chen, X. Zheng, Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH, Environ. Sci. Technol., 43 (2009) 4373–4380.
  64. M. Atasoy, I. Owusu-Agyeman, E. Plaza, Z. Cetecioglu, Biobased volatile fatty acid production and recovery from waste streams: current status and future challenges, Bioresour. Technol., 268 (2018) 773–786.
  65. G.K. Veluswamy, K. Shah, A.S. Ball, A.J. Guwy, R.M. Dinsdale, A techno-economic case for volatile fatty acid production for increased sustainability in the wastewater treatment industry, Environ. Sci. Water Res. Technol., 7 (2021) 927–941.
  66. H. Ma, S. Zhang, X. Lu, B. Xi, X. Guo, H. Wang, J. Duan, Excess sludge reduction using pilot-scale lysis-cryptic growth system integrated ultrasonic/alkaline disintegration and hydrolysis/acidogenesis pretreatment, Bioresour. Technol., 116 (2012) 441–447.
  67. V.D. Leite, J.M.R. Paredes, T.A.T. de Sousa, W.S. Lopes, J.T. de Sousa, Ammoniacal nitrogen stripping from landfill leachate at open horizontal flow reactors, Water Environ. Res., 90 (2018) 387–394.
  68. X.L. Li, L. Zhang, B.K. Li, C.Y. Wu, Y.Z. Peng, Alkaline fermentation and elutriation of waste activated sludge for short chain fatty acids abstraction, J. Chem. Technol. Biotechnol., 93 (2018) 138–145.
  69. M. Ye, J. Luo, S. Zhang, H. Yang, Y.-Y. Li, J. Liu, In-situ ammonia stripping with alkaline fermentation of waste activated sludge to improve short-chain fatty acids production and carbon source availability, Bioresour. Technol., 301 (2020) 1–6.
  70. V. Toutian, M. Barjenbruch, C. Loderer, C. Remy, Pilot study of thermal alkaline pretreatment of waste activated sludge: seasonal effects on anaerobic digestion and impact on dewaterability and refractory COD, Water Res., 182 (2020) 1–48.
  71. S. Shi, G. Xu, Identification of phosphorus fractions of biofilm sludge and phosphorus release, transformation and modeling in biofilm sludge treatment related to pH, Chem. Eng. J., 369 (2019) 694–704.
  72. L.-K. Ju, H.K. Shah, J. Porteous, Phosphorus release in aerobic sludge digestion, Water Environ. Res., 77 (2005) 553–559.
  73. G. Tchobanoglous, F.L. Burton, H.D. Stensel, Metcalf & Eddy, Inc., Wastewater Engineering Teatment and Reuse, J. Wastewater Eng., 4th ed., 2003.
  74. A.C. Miranda, W.S. Lopes, A.V. Haandel, Influência da concentração de sal na atividade do lodo, Hydro, 10 (2014) 36–43.
  75. J.D. Muñoz Sierra, M.J. Oosterkamp, W. Wang, H. Spanjers, J.B. van Lier, Impact of long-term salinity exposure in anaerobic membrane bioreactors treating phenolic wastewater: performance robustness and endured microbial community, Water Res., 141 (2018) 172–184.
  76. H. Chen, H. Yi, H. Li, X. Guo, B. Xiao, Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: performance, energy balance and, enhancement mechanism, Renewable Energy, 147 (2020) 2409–2416.
  77. S. Ma, H. Hu, J. Wang, K. Liao, H. Ma, H. Ren, The characterization of dissolved organic matter in alkaline fermentation of sewage sludge with different pH for volatile fatty acids production, Water Res., 164 (2019) 1–9.
  78. Y. Chen, R. Ruhyadi, J. Huang, W. Yan, G. Wang, N. Shen, W. Hanggoro, A novel strategy for improving volatile fatty acid purity, phosphorus removal efficiency, and fermented sludge dewaterability during waste activated sludge fermentation, Waste Manage., 119 (2021) 195–201.