References
  -  S. Danlami Musa, Z.H. Tang, A.O. Ibrahim, M. Habib, China’s
    energy status: a critical look at fossils and renewable options,
    Renewable Sustainable Energy Rev., 81 (2018) 2281–2290. 
-  C. Lyheang, B. Limmeechokchai, The role of renewable energy
	  in CO2 mitigation from power sector in Cambodia, Int. Energy J.,
  18 (2018) 401–408. 
-  M.A. Lima, L.F.R. Mendes, G.A. Mothé, F.G. Linhares,
    M.P.P. de Castro, M.G. da Silva, M.S. Sthel, Renewable energy
    in reducing greenhouse gas emissions: reaching the goals of
    the Paris agreement in Brazil, Environ. Dev., 33 (2020) 100504,
    doi: 10.1016/j.envdev.2020.100504. 
-  R.M. Almeida, Q. Shi, J.M. Gomes-Selman, X.J. Wu, Y.X. Xue,
    H. Angarita, N. Barros, B.R. Forsberg, 
 R. García-Villacorta,
    S.K. Hamilton, J.M. Melack, M. Montoya, G. Perez, S.A. Sethi,
    C.P. Gomes, A.S. Flecker, Reducing greenhouse gas emissions
    of Amazon hydropower with strategic dam planning, Nat.
    Commun., 10 (2019) 4281, doi: 10.1038/s41467-019-12179-5.
-  A. Hussain, G.K. Sarangi, A. Pandit, S. Ishaq, N. Mamnun,
    B. Ahmad, M.K. Jamil, Hydropower development in the Hindu
    Kush Himalayan region: issues, policies and opportunities,
    Renewable Sustainable Energy Rev., 107 (2019) 446–461. 
-  A. Kumar, T. Yang, M.P. Sharma, Long-term prediction of
    greenhouse gas risk to the Chinese hydropower reservoirs, Sci.
    Total Environ., 646 (2019) 300–308. 
-  L.P. Rosa, M.A.D. Santos, B. Matvienko, E.O.D. Santos, E. Sikar,
    Greenhouse gas emissions from hydroelectric reservoirs in
    tropical regions, Clim. Change, 1 (2004) 9–21. 
-  J.P. Ometto, A.C.P. Cimbleris, M.A. dos Santos, L.P. Rosa,
    D. Abe, J.G. Tundisi, J.L. Stech, N. Barros, F. Roland, Carbon
    emission as a function of energy generation in hydroelectric
    reservoirs in Brazilian dry tropical biome, Energy Policy,
    58 (2013) 109–116. 
-  P.E. Carvajal, F.G.N. Li, Challenges for hydropower-based
    nationally determined contributions: a case study for Ecuador,
    Clim. Policy (Earthscan), 19 (2019) 974–987. 
-  J.A. Goldenfum, Challenges and solutions for assessing the
    impact of freshwater reservoirs on natural GHG emissions,
    Ecohydrol. Hydrobiol., 12 (2012) 115–122. 
-  M.A. dos Santos, M.A. Amorim, J.E.L. Maddock, A.C. Lessa,
    J.M. Damázio, A.M. de Medeiros, O.M. Junior, 
 Pre-existing
    greenhouse gas emissions from Brazilian hydropower
    reservoirs, Ecohydrol. Hydrobiol., 19 (2019) 541–553.
-  S. Fan, M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento,
    T. Takahashi, P. Tans, A large terrestrial carbon sink in North
    America implied by atmospheric and oceanic carbon dioxide
    data and models, Science, 282 (1998) 442–446. 
-  C. Galy-Lacaux, R. Delmas, C. Jambert, J.-F. Dumestre,
    L. Labroue, S. Richard, P. Gosse, Gaseous emissions and oxygen
    consumption in hydroelectric dams: a case study in French
    Guyana, Global Biogeochem. Cycles, 11 (1997) 471–483. 
-  F. Guérin, G. Abril, D. Serça, C. Delon, S. Richard, R. Delmas,
    A. Tremblay, L. Varfalvy, Gas transfer velocities of CO2 and CH4
    in a tropical reservoir and its river downstream, J. Mar. Syst.,
    66 (2007) 161–172. 
-  S.Y. Li, R.T. Bush, I.R. Santos, Q.F. Zhang, K. Song, R. Mao,
    Z.D. Wen, X.X. Lu, Large greenhouse gases emissions from
    China’s lakes and reservoirs, Water Res., 147 (2018) 13–24. 
-  S.Y. Li, Q.F. Zhang, Carbon emission from global hydroelectric
    reservoirs revisited, Environ. Sci. Pollut. Res. Int., 21 (2014)
    13636–13641. 
-  P. Louchouarn, M. Lucotte, E. Duchemin, A. de Vernal,
    Early diagenetic processes in recent sediments of the Gulf of
    St-Lawrence: phosphorus, carbon and iron burial rates, Mar.
    Geol., 139 (1997) 181–200. 
-  P.J. Mulholland, J.W. Elwood, The role of lake and reservoir
    sediments as sinks in the perturbed global carbon cycle, Tellus,
    34 (1982) 490–499. 
-  P.A. Raymond, N.F. Caraco, J.J. Cole, Carbon dioxide
    concentration and atmospheric flux in the Hudson River,
    Estuaries Coasts, 20 (1997) 381–390. 
-  G. Samiotis, G. Pekridis, N. Kaklidis, E. Trikoilidou,
    N. Taousanidis, E. Amanatidou, Greenhouse gas emissions
    from two hydroelectric reservoirs in Mediterranean region,
    Environ. Monit. Assess., 190 (2018) 1–13. 
-  E. Duchemin, M. Lucotte, R. Canuel, A. Chamberland,
    Production of the greenhouse gases CH4 and CO2 by
    hydroelectric reservoirs of the boreal region, Global Biogeochem.
  Cycles, 9 (1995) 529–540. 
-  J.W.M. Rudd, R. Harris, C.A. Kelly, R.E. Hecky, Are
    hydroelectric reservoirs significant sources of greenhouse
    gases?, AMBIO – A J. Human Environ., 22 (1993) 246–248. 
-  L.P. Rosa, R. Schaeffer, M.A.D. Santos, Are hydroelectric dams
    in the Brazilian Amazon significant sources of ‘greenhouse’
    gases?, Environ. Conserv., 23 (1996) 2–6. 
-  M.A. dos Santos, J.M. Damázio, J.P. Rogério, M.A. Amorim,
    A.M. Medeiros, J.L.S. Abreu, M.E.P. Maceira, A.C. Melo,
    L.P. Rosa, Estimates of GHG emissions by hydroelectric reservoirs:
    the Brazilian case, Energy, 13 (2017) 99–107. 
-  V.L. St. Louis, C.A. Kelly, É. Duchemin, J.W.M. Rudd,
    D.M. Rosenberg, Reservoir surfaces as sources of greenhouse
    gases to the atmosphere: a global estimate, BioScience, 50 (2000)
    766–775. 
-  H. Dai, H. Li, T. Zhen, The measuring techniques of greenhouse
    gas emission from reservoir aquatic ecosystem, Eng. Sci.,
    12 (2010) 21–28. 
-  E. Duchemin, M. Lucotte, R. Canuel, Comparison of static
    chamber and thin boundary layer equation methods for
    measuring greenhouse gas emissions from large water bodies,
    Environ. Sci. Technol., 33 (1999) 350–357. 
-  P.S. Liss, P.G. Slater, Flux of gases across the air-sea interface,
    Nature, 247 (1974) 181–184. 
-  P.D. Quay, S.L. King, J. Stutsman, D.O. Wilbur, L.P. Steele,
    I. Fung, R.H. Gammon, T.A. Brown, G.W. Farwell, 
 P.M. Grootes,
    F.H. Schmidt, Carbon isotopic composition of atmospheric
    CH4: fossil and biomass burning source strengths, Global
    Biogeochem. Cycles, 5 (1991) 25–47.
-  S.B. Xiao, C.H. Wang, R.J. Wilkinson, D.F. Liu, C. Zhang,
    W.N. Xu, Z.J. Yang, Y.C. Wang, D. Lei, Theoretical model for
    diffusive greenhouse gas fluxes estimation across water–air
    interfaces measured with the static floating chamber method,
    Atmos. Environ., 137 (2016) 45–52. 
-  Y.H. Liu, K. Zhang, Z.J. Li, Z.Y. Liu, J.F. Wang, P.N. Huang,
    A hybrid runoff generation modelling framework based on
    spatial combination of three runoff generation schemes for
    semi-humid and semi-arid watersheds, J. Hydrol. (Amsterdam),
    590 (2020) 125440, doi: 10.1016/j.jhydrol.2020.125440. 
-  D. Chen, W.-Q. Liu, Y.-J. Zhang, J.-G. Liu, Q.-N. Wei,
    R.-F. Kan, M. Wang, Y.-B. Cui, J.-Y. Chen, Modulation frequency
    multiplexed tunable diode laser spectroscopy system for
    simultaneous CO, CO2 measurements, Chin. Phys. Lett.,
    23 (2006) 2446–2449. 
-  B.W. Blomquist, C.W. Fairall, B.J. Huebert, D.J. Kieber,
    G.R. Westby, DMS sea-air transfer velocity: direct measurements
    by eddy covariance and parameterization based on
    the NOAA/COARE gas transfer model, Geophys. Res. Lett.,
    33 (2006) L07601, doi: 10.1029/2006GL025735. 
-  Y. He, Y.-J. Zhang, R.-F. Kan, H. Xia, H. Geng, J. Ruan,
    M. Wang, X.-J. Cui, W.-Q. Liu, Open-path online monitoring
    of ambient atmospheric CO2 based on laser absorption
    spectrum, Spectrosc. Spectral Anal., 29 (2009) 10–13. 
-  G. Forster, R.C. Upstill-Goddard, N. Gist, C. Robinson, G. Uher,
    E.M.S. Woodward, Nitrous oxide and methane in the Atlantic
    Ocean between 50°N and 52°S: latitudinal distribution and sea-to-air flux, Deep Sea Res. Part II, 56 (2009) 964–976. 
-  W.S. Broecker, J.R. Ledwell, T. Takahashi, R. Weiss, L. Merlivat,
    L. Memery, T.-H. Peng, B. Jahne, K.O. Munnich, Isotopic
    versus micrometeorologic ocean CO2 fluxes: a serious conflict,
    J. Geophys. Res. C: Oceans, 91 (1986) 517–527. 
-  H. Wu, F.J. Zhang, Z.Y. Zhang, L. Hou, Atomization and
    droplet dynamics of a gas-liquid two-phase jet under different
    mass loading ratios, Int. J. Multiphase Flow, 15 (2022) 104043,
    doi:10.1016/j.ijmultiphaseflow.2022.104043.