References
- P. Wijeyawardana, N. Nanayakkara, C. Gunasekara,
A. Karunarathna, D. Law, B.K. Pramanik, Improvement of
heavy metal removal from urban runoff using modified
pervious concrete, Sci. Total Environ., 815 (2022) 152936,
doi: 10.1016/j.scitotenv.2022.152936.
- J.F. Chin, Z.W. Heng, H.C. Teoh, W.C. Chong, Y.L. Pang, Recent
development of magnetic biochar crosslinked chitosan on heavy
metal removal from wastewater – modification, application and
mechanism, Chemosphere, 291 (2021) 133035, doi: 10.1016/j.chemosphere.2021.133035.
- S.A. Rosli, N. Alias, N. Bashirom, S. Ismail, W.K. Tan,
G. Kawamura, A. Matsuda, Z. Lockman, Hexavalent chromium
removal via photoreduction by sunlight on titanium–dioxide
nanotubes formed by anodization with a fluorinated glycerol–water electrolyte, Catalysts, 11 (2021) 376, doi: 10.3390/catal11030376.
- F. Budiman, W.K. Tan, G. Kawamura, H. Muto, A. Matsuda,
K. Abdul Razak, Z. Lockman, Formation of dense and high-aspect-ratio iron oxide nanowires by water vapor-assisted
thermal oxidation and their Cr(VI) adsorption properties,
ACS Omega, 6 (2021) 28203–28214.
- Z. Pan, X. Zhu, A. Satpathy, W. Li, J.D. Fortner, D.E. Giammar,
Cr(VI) adsorption on engineered iron oxide nanoparticles:
exploring complexation processes and water chemistry,
Environ. Sci. Technol., 53 (2019) 11913–11921.
- J.A. Korak, R. Huggins, M. Arias-Paic, Regeneration of pilotscale
ion exchange columns for hexavalent chromium removal,
Water Res., 118 (2017) 141–151.
- H. Wang, X. Song, H. Zhang, P. Tan, F. Kong, Removal of
hexavalent chromium in dual-chamber microbial fuel cells
separated by different ion exchange membranes, J. Hazard.
Mater., 384 (2020) 121459, doi:10.1016/j.jhazmat.2019.121459
- A. Bratovcic, H. Buksek, C. Helix-Nielsen, I. Petrinic,
Concentrating hexavalent chromium electroplating wastewater
for recovery and reuse by forward osmosis using underground
brine as draw solution, Chem. Eng. J., 431 (2022) 133918,
doi: 10.1016/j.cej.2021.133918.
- N. Dizge, Y. Ozay, M. Boussemghoune, M. Chikhi, Preparation
of catalytic polyether sulfone coated ceramic membrane for
reduction of hexavalent chromium, J. Water Process Eng.,
40 (2021) 101946, doi:10.1016/j.jwpe.2021.101946.
- W. Shen, J. Zhang, M. Xiao, X. Zhang, J. Li, W. Jiang, J. Yan,
Z. Qin, S. Zhang, W. He, Y. He, Ethylenediaminetetraacetic
acid induces surface erosion of zero-valent iron for enhanced
hexavalent chromium removal, Appl. Surf. Sci., 525 (2020)
146593, doi: 10.1016/j.apsusc.2020.146593.
- H. Xu, J. Bai, X. Yang, C. Zhang, M. Yao, Y. Zhao, Lab scalestudy
on the efficiency and distribution of energy consumption
in chromium contaminated aquifer electrokinetic remediation,
Environ. Technol. Innovation, 25 (2022) 102194, doi: 10.1016/j.eti.2021.102194.
- X. He, G. Cui, Q. Zhang, Z. Wang, T. Tang, Y. Liu, Application
of sulfide-modified nanoscale zerovalent iron electrodes for
electrokinetic remediation of chromium-contaminated soil in
a three-dimensional electrode system, J. Environ. Chem. Eng.,
9 (2021) 106791, doi: 10.1016/j.jece.2021.106791.
- N. Luo, C. Chen, D. Yang, W. Hu, F. Dong, S defect-rich
ultrathin 2D MoS2: the role of S point-defects and S strippingdefects
in the removal of Cr(VI) via synergistic adsorption and
photocatalysis, Appl. Catal., B, 299 (2021) 120664, doi: 10.1016/j.apcatb.2021.120664.
- Z. Jiang, K. Chen, Y. Zhang, Y. Wang, F. Wang, G. Zhang,
D.D. Dionysiou, Magnetically recoverable MgFe2O4/conjugated
polyvinyl chloride derivative nanocomposite with higher
visible-light photocatalytic activity for treating Cr(VI)-polluted
water, Sep. Purif. Technol., 236 (2020) 116272, doi: 10.1016/j.seppur.2019.116272.
- T. Ge, Z. Jiang, L. Shen, J. Li, Z. Lu, Y. Zhang, F. Wang, Synthesis
and application of Fe3O4/FeWO4 composite as an efficient and
magnetically recoverable visible light-driven photocatalyst for
the reduction of Cr(VI), Sep. Purif. Technol., 263 (2021) 118401,
doi: 10.1016/j.seppur.2021.118401.
- Q. Zhao, X.-H. Yi, C.-C. Wang, P. Wang, W. Zheng, Photocatalytic
Cr(VI) reduction over MIL-101(Fe)–NH2 immobilized on
alumina substrate: from batch test to continuous operation,
Chem. Eng. J., 429 (2022) 132497, doi: 10.1016/j.cej.2021.132497.
- V.M. Boddu, K. Abburi, J.L. Talbott, E.D. Smith, Removal of
hexavalent chromium from wastewater using a new composite
chitosan biosorbent, Environ. Sci. Technol., 37 (2003) 4449–4456.
- T. Kekes, G. Kolliopoulos, C. Tzia, Hexavalent chromium
adsorption onto crosslinked chitosan and
chitosan/β-cyclodextrin
beads: novel materials for water decontamination, J. Environ.
Chem. Eng., 9 (2021) 105581, doi: 10.1016/j.jece.2021.105581.
- S. Mortazavian, H. An, D. Chun, J. Moon, Activated carbon
impregnated by zero-valent iron nanoparticles (AC/nZVI)
optimized for simultaneous adsorption and reduction of
aqueous hexavalent chromium: material characterizations and
kinetic studies, Chem. Eng. J., 353 (2018) 781–795.
- S. Shahrin, W.-J. Lau, P.-S. Goh, J. Jaafar, A.F. Ismail, Adsorptive
removal of As(V) ions from water using graphene oxidemanganese
ferrite and titania nanotube-manganese ferrite
hybrid nanomaterials, Chem. Eng. Technol., 41 (2018) 2250–2258.
- G. Qin, M.J. McGuire, N.K. Blute, C. Seidel, L. Fong, Hexavalent
chromium removal by reduction with ferrous sulfate,
coagulation, and filtration: a pilot-scale study, Environ. Sci.
Technol., 39 (2005) 6321–6327.
- W. Jiang, Q. Cai, W. Xu, M. Yang, Y. Cai, D.D. Dionysiou,
K.E. O’Shea, Cr(VI) adsorption and reduction by humic acid
coated on magnetite, Environ. Sci. Technol., 48 (2014) 8078–8085.
- H. Yi, C. Lai, X. Huo, L. Qin, Y. Fu, S. Liu, L. Li, M. Zhang,
M. Chen, G. Zeng, H2O2-free photo-Fenton system for antibiotics
degradation in water via the synergism of oxygen-enriched
graphitic carbon nitride polymer and nano manganese ferrite,
Environ. Sci.: Nano, 9 (2022) 815–826.
- Z. Liu, Z. Gao, Q. Wu, Activation of persulfate by magnetic
zirconium-doped manganese ferrite for efficient degradation
of tetracycline, Chem. Eng. J., 423 (2021) 130283, doi: 10.1016/j.cej.2021.130283.
- A.J.R. Luciano, L. de Sousa Soletti, M.E.C. Ferreira, L.F. Cusioli,
M.B. de Andrade, R. Bergamasco,
N.U. Yamaguchi, Manganese
ferrite dispersed over graphene sand composite for methylene
blue photocatalytic degradation, J. Environ. Chem. Eng.,
8 (2020) 104191, doi: 10.1016/j.jece.2020.104191.
- L. Wang, J. Li, Y. Wang, L. Zhao, Q. Jiang, Adsorption capability
for Congo red on nanocrystalline MFe2O4 (M = Mn, Fe, Co, Ni)
spinel ferrites, Chem. Eng. J., 181–182 (2012) 72–79.
- J. Hu, Lo, G. Chen, Fast removal and recovery of Cr(VI) using
surface-modified jacobsite (MnFe2O4) nanoparticles, Langmuir,
21 (2005) 11173–11179.
- N. Ueda Yamaguchi, R. Bergamasco, S. Hamoudi, Magnetic
MnFe2O4–graphene hybrid composite for efficient removal of
glyphosate from water, Chem. Eng. J., 295 (2016) 391–402.
- T. Wang, L. Zhang, H. Wang, W. Yang, Y. Fu, W. Zhou,
W. Yu, K. Xiang, Z. Su, S. Dai, L. Chai, Controllable
synthesis of hierarchical porous Fe3O4 particles mediated by
poly(diallyldimethylammonium chloride) and their application
in arsenic removal, ACS Appl. Mater. Interfaces, 5 (2013)
12449–12459.
- Y.-C. Chen, P. Smirniotis, Enhancement of photocatalytic
degradation of phenol and chlorophenols by ultrasound, Ind.
Eng. Chem. Res., 41 (2002) 5958–5965.
- G. Bonsdorf, K. Schäfer, K. Teske, H. Langbein, H. Ullmann,
Stability region and oxygen stoichiometry of manganese ferrite,
Solid State Ionics, 110 (1998) 73–82.
- Y. Mu, H. Wu, Z. Ai, Negative impact of oxygen molecular
activation on Cr(VI) removal with core-shell
Fe@Fe2O3
nanowires, J. Hazard. Mater., 298 (2015) 1–10.
- Y. Fu, P. Xiong, H. Chen, X. Sun, X. Wang, High photocatalytic
activity of magnetically separable manganese ferrite–graphene
heteroarchitectures, Ind. Eng. Chem. Res., 51 (2012) 725–731.
- J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook
of X-ray Photoelectron Spectroscopy:
A Reference Book of
Standard Spectra for Identification and Interpretation of XPS
Data, Perkin-Elmer Corporation Physical Electronics Division,
United States of America, 1992.
- C.F. Huber, G.P. Haight, The oxidation of manganese(II) by
chromium(VI) in the presence of oxalate ion, J. Am. Chem. Soc.,
98 (1976) 4128–4131.
- K.U. Din, K. Hartani, Z. Khan, Effect of micelles on the oxidation
of oxalic acid by chromium(VI) in the presence and absence of
manganese(II), Colloids Surf., A, 193 (2001) 1–13.
- B. Sarkar, R. Naidu, G.S.R. Krishnamurti, M. Megharaj,
Manganese(II)-catalyzed and clay-minerals-mediated reduction
of chromium(VI) by citrate, Environ. Sci. Technol., 47 (2013)
13629–13636.
- W. Liu, J. Li, J. Zheng, Y. Song, Z. Shi, Z. Lin, L. Chai, Different
pathways for Cr(III) oxidation: implications for Cr(VI)
reoccurrence in reduced chromite ore processing residue,
Environ. Sci. Technol., 54 (2020) 11971–11979.
- W. Liu, B. Sun, J. Qiao, X. Guan, Influence of pyrophosphate
on the generation of soluble Mn(III) from reactions involving
Mn oxides and Mn(VII), Environ. Sci. Technol., 53 (2019)
10227–10235.