References

  1. P. Wijeyawardana, N. Nanayakkara, C. Gunasekara, A. Karunarathna, D. Law, B.K. Pramanik, Improvement of heavy metal removal from urban runoff using modified pervious concrete, Sci. Total Environ., 815 (2022) 152936, doi: 10.1016/j.scitotenv.2022.152936.
  2. J.F. Chin, Z.W. Heng, H.C. Teoh, W.C. Chong, Y.L. Pang, Recent development of magnetic biochar crosslinked chitosan on heavy metal removal from wastewater – modification, application and mechanism, Chemosphere, 291 (2021) 133035, doi: 10.1016/j.chemosphere.2021.133035.
  3. S.A. Rosli, N. Alias, N. Bashirom, S. Ismail, W.K. Tan, G. Kawamura, A. Matsuda, Z. Lockman, Hexavalent chromium removal via photoreduction by sunlight on titanium–dioxide nanotubes formed by anodization with a fluorinated glycerol–water electrolyte, Catalysts, 11 (2021) 376, doi: 10.3390/catal11030376.
  4. F. Budiman, W.K. Tan, G. Kawamura, H. Muto, A. Matsuda, K. Abdul Razak, Z. Lockman, Formation of dense and high-aspect-ratio iron oxide nanowires by water vapor-assisted thermal oxidation and their Cr(VI) adsorption properties, ACS Omega, 6 (2021) 28203–28214.
  5. Z. Pan, X. Zhu, A. Satpathy, W. Li, J.D. Fortner, D.E. Giammar, Cr(VI) adsorption on engineered iron oxide nanoparticles: exploring complexation processes and water chemistry, Environ. Sci. Technol., 53 (2019) 11913–11921.
  6. J.A. Korak, R. Huggins, M. Arias-Paic, Regeneration of pilotscale ion exchange columns for hexavalent chromium removal, Water Res., 118 (2017) 141–151.
  7. H. Wang, X. Song, H. Zhang, P. Tan, F. Kong, Removal of hexavalent chromium in dual-chamber microbial fuel cells separated by different ion exchange membranes, J. Hazard. Mater., 384 (2020) 121459, doi:10.1016/j.jhazmat.2019.121459
  8. A. Bratovcic, H. Buksek, C. Helix-Nielsen, I. Petrinic, Concentrating hexavalent chromium electroplating wastewater for recovery and reuse by forward osmosis using underground brine as draw solution, Chem. Eng. J., 431 (2022) 133918, doi: 10.1016/j.cej.2021.133918.
  9. N. Dizge, Y. Ozay, M. Boussemghoune, M. Chikhi, Preparation of catalytic polyether sulfone coated ceramic membrane for reduction of hexavalent chromium, J. Water Process Eng., 40 (2021) 101946, doi:10.1016/j.jwpe.2021.101946.
  10. W. Shen, J. Zhang, M. Xiao, X. Zhang, J. Li, W. Jiang, J. Yan, Z. Qin, S. Zhang, W. He, Y. He, Ethylenediaminetetraacetic acid induces surface erosion of zero-valent iron for enhanced hexavalent chromium removal, Appl. Surf. Sci., 525 (2020) 146593, doi: 10.1016/j.apsusc.2020.146593.
  11. H. Xu, J. Bai, X. Yang, C. Zhang, M. Yao, Y. Zhao, Lab scalestudy on the efficiency and distribution of energy consumption in chromium contaminated aquifer electrokinetic remediation, Environ. Technol. Innovation, 25 (2022) 102194, doi: 10.1016/j.eti.2021.102194.
  12. X. He, G. Cui, Q. Zhang, Z. Wang, T. Tang, Y. Liu, Application of sulfide-modified nanoscale zerovalent iron electrodes for electrokinetic remediation of chromium-contaminated soil in a three-dimensional electrode system, J. Environ. Chem. Eng., 9 (2021) 106791, doi: 10.1016/j.jece.2021.106791.
  13. N. Luo, C. Chen, D. Yang, W. Hu, F. Dong, S defect-rich ultrathin 2D MoS2: the role of S point-defects and S strippingdefects in the removal of Cr(VI) via synergistic adsorption and photocatalysis, Appl. Catal., B, 299 (2021) 120664, doi: 10.1016/j.apcatb.2021.120664.
  14. Z. Jiang, K. Chen, Y. Zhang, Y. Wang, F. Wang, G. Zhang, D.D. Dionysiou, Magnetically recoverable MgFe2O4/conjugated polyvinyl chloride derivative nanocomposite with higher visible-light photocatalytic activity for treating Cr(VI)-polluted water, Sep. Purif. Technol., 236 (2020) 116272, doi: 10.1016/j.seppur.2019.116272.
  15. T. Ge, Z. Jiang, L. Shen, J. Li, Z. Lu, Y. Zhang, F. Wang, Synthesis and application of Fe3O4/FeWO4 composite as an efficient and magnetically recoverable visible light-driven photocatalyst for the reduction of Cr(VI), Sep. Purif. Technol., 263 (2021) 118401, doi: 10.1016/j.seppur.2021.118401.
  16. Q. Zhao, X.-H. Yi, C.-C. Wang, P. Wang, W. Zheng, Photocatalytic Cr(VI) reduction over MIL-101(Fe)–NH2 immobilized on alumina substrate: from batch test to continuous operation, Chem. Eng. J., 429 (2022) 132497, doi: 10.1016/j.cej.2021.132497.
  17. V.M. Boddu, K. Abburi, J.L. Talbott, E.D. Smith, Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent, Environ. Sci. Technol., 37 (2003) 4449–4456.
  18. T. Kekes, G. Kolliopoulos, C. Tzia, Hexavalent chromium adsorption onto crosslinked chitosan and
    chitosan/β-cyclodextrin beads: novel materials for water decontamination, J. Environ. Chem. Eng., 9 (2021) 105581, doi: 10.1016/j.jece.2021.105581.
  19. S. Mortazavian, H. An, D. Chun, J. Moon, Activated carbon impregnated by zero-valent iron nanoparticles (AC/nZVI) optimized for simultaneous adsorption and reduction of aqueous hexavalent chromium: material characterizations and kinetic studies, Chem. Eng. J., 353 (2018) 781–795.
  20. S. Shahrin, W.-J. Lau, P.-S. Goh, J. Jaafar, A.F. Ismail, Adsorptive removal of As(V) ions from water using graphene oxidemanganese ferrite and titania nanotube-manganese ferrite hybrid nanomaterials, Chem. Eng. Technol., 41 (2018) 2250–2258.
  21. G. Qin, M.J. McGuire, N.K. Blute, C. Seidel, L. Fong, Hexavalent chromium removal by reduction with ferrous sulfate, coagulation, and filtration: a pilot-scale study, Environ. Sci. Technol., 39 (2005) 6321–6327.
  22. W. Jiang, Q. Cai, W. Xu, M. Yang, Y. Cai, D.D. Dionysiou, K.E. O’Shea, Cr(VI) adsorption and reduction by humic acid coated on magnetite, Environ. Sci. Technol., 48 (2014) 8078–8085.
  23. H. Yi, C. Lai, X. Huo, L. Qin, Y. Fu, S. Liu, L. Li, M. Zhang, M. Chen, G. Zeng, H2O2-free photo-Fenton system for antibiotics degradation in water via the synergism of oxygen-enriched graphitic carbon nitride polymer and nano manganese ferrite, Environ. Sci.: Nano, 9 (2022) 815–826.
  24. Z. Liu, Z. Gao, Q. Wu, Activation of persulfate by magnetic zirconium-doped manganese ferrite for efficient degradation of tetracycline, Chem. Eng. J., 423 (2021) 130283, doi: 10.1016/j.cej.2021.130283.
  25. A.J.R. Luciano, L. de Sousa Soletti, M.E.C. Ferreira, L.F. Cusioli, M.B. de Andrade, R. Bergamasco,
    N.U. Yamaguchi, Manganese ferrite dispersed over graphene sand composite for methylene blue photocatalytic degradation, J. Environ. Chem. Eng., 8 (2020) 104191, doi: 10.1016/j.jece.2020.104191.
  26. L. Wang, J. Li, Y. Wang, L. Zhao, Q. Jiang, Adsorption capability for Congo red on nanocrystalline MFe2O4 (M = Mn, Fe, Co, Ni) spinel ferrites, Chem. Eng. J., 181–182 (2012) 72–79.
  27. J. Hu, Lo, G. Chen, Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles, Langmuir, 21 (2005) 11173–11179.
  28. N. Ueda Yamaguchi, R. Bergamasco, S. Hamoudi, Magnetic MnFe2O4–graphene hybrid composite for efficient removal of glyphosate from water, Chem. Eng. J., 295 (2016) 391–402.
  29. T. Wang, L. Zhang, H. Wang, W. Yang, Y. Fu, W. Zhou, W. Yu, K. Xiang, Z. Su, S. Dai, L. Chai, Controllable synthesis of hierarchical porous Fe3O4 particles mediated by poly(diallyldimethylammonium chloride) and their application in arsenic removal, ACS Appl. Mater. Interfaces, 5 (2013) 12449–12459.
  30. Y.-C. Chen, P. Smirniotis, Enhancement of photocatalytic degradation of phenol and chlorophenols by ultrasound, Ind. Eng. Chem. Res., 41 (2002) 5958–5965.
  31. G. Bonsdorf, K. Schäfer, K. Teske, H. Langbein, H. Ullmann, Stability region and oxygen stoichiometry of manganese ferrite, Solid State Ionics, 110 (1998) 73–82.
  32. Y. Mu, H. Wu, Z. Ai, Negative impact of oxygen molecular activation on Cr(VI) removal with core-shell
    Fe@Fe2O3 nanowires, J. Hazard. Mater., 298 (2015) 1–10.
  33. Y. Fu, P. Xiong, H. Chen, X. Sun, X. Wang, High photocatalytic activity of magnetically separable manganese ferrite–graphene heteroarchitectures, Ind. Eng. Chem. Res., 51 (2012) 725–731.
  34. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy:
    A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Perkin-Elmer Corporation Physical Electronics Division, United States of America, 1992.
  35. C.F. Huber, G.P. Haight, The oxidation of manganese(II) by chromium(VI) in the presence of oxalate ion, J. Am. Chem. Soc., 98 (1976) 4128–4131.
  36. K.U. Din, K. Hartani, Z. Khan, Effect of micelles on the oxidation of oxalic acid by chromium(VI) in the presence and absence of manganese(II), Colloids Surf., A, 193 (2001) 1–13.
  37. B. Sarkar, R. Naidu, G.S.R. Krishnamurti, M. Megharaj, Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate, Environ. Sci. Technol., 47 (2013) 13629–13636.
  38. W. Liu, J. Li, J. Zheng, Y. Song, Z. Shi, Z. Lin, L. Chai, Different pathways for Cr(III) oxidation: implications for Cr(VI) reoccurrence in reduced chromite ore processing residue, Environ. Sci. Technol., 54 (2020) 11971–11979.
  39. W. Liu, B. Sun, J. Qiao, X. Guan, Influence of pyrophosphate on the generation of soluble Mn(III) from reactions involving Mn oxides and Mn(VII), Environ. Sci. Technol., 53 (2019) 10227–10235.