References

  1. M.L. Sall, A.K.D. Diaw, D. Gningue-Sall, S. Efremova Aaron, J.-J. Aaron, Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review, Environ. Sci. Pollut. Res., 27 (2020) 29927–29942.
  2. T.O. Ajiboye, O.A. Oyewo, D.C. Onwudiwe, Simultaneous removal of organics and heavy metals from industrial wastewater: a review, Chemosphere, 26 (2021) 128379, doi: 10.1016/j.chemosphere.2020.128379.
  3. S. Ali, Z. Abbas, M. Rizwan, I.E. Zaheer, I. Yavaş, A. Ünay, M.M. Abdel-DAIM, M. Bin-Jumah, M. Hasanuzzaman,
    D. Kalderis, Application of floating aquatic plants in phytoremediation of heavy metals polluted water:
    a review, Sustainability, 12 (2020) 1927, doi: 10.3390/su12051927.
  4. C. Santhosh, R. Nivetha, P. Kollu, V. Srivastava, M. Sillanpää, A.N. Grace, A. Bhatnagar, Removal of cationic and anionic heavy metals from water by 1D and 2D-carbon structures decorated with magnetic nanoparticles, Sci. Rep., 7 (2017) 14107, doi: 10.1038/s41598-017-14461-2.
  5. A. Singh, P. Khare, S. Verma, A. Bhati, A.K. Sonker, K.M. Tripathi, S.K. Sonkar, Pollutant soot for pollutant dye degradation: soluble graphene nanosheets for visible light induced photodegradation of methylene blue, ACS Sustainable Chem. Eng., 5 (2017) 8860–8869.
  6. T.S. Anirudhan, S.S. Sreekumari, Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons, J. Environ. Sci., 23 (2011) 1989–1998.
  7. A.H. Mahvi, D. Balarak, E. Bazrafshan, Remarkable reusability of magnetic Fe3O4-graphene oxide composite:
    a highly effective adsorbent for Cr(VI) ions, Int. J. Environ. Anal. Chem., (2021) 1–21, doi:10.1080/03067319.20211910250.
  8. X. Fang, J. Li, X. Li, S. Pan, X. Zhang, X. Sun, J. Shen, W. Han, L. Wang, Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal, Chem. Eng. J., 314 (2017) 38–49.
  9. Y. Li, Z. Xu, S. Liu, J. Zhang, X. Yang, Molecular simulation of reverse osmosis for heavy metal ions using functionalized nanoporous graphenes, Comput. Mater. Sci., 139 (2017) 65–74.
  10. B. Eyvazi, A. Jamshidi-Zanjani, A.K. Darban, Immobilization of hexavalent chromium in contaminated soil using nanomagnetic MnFe2O4, J. Hazard. Mater., 365 (2019) 813–819.
  11. Y. Qiu, Q. Zhang, B. Gao, M. Li, Z. Fan, W. Sang, H. Hao, X. Wei, Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron: synergy of adsorption, reduction and transformation, Environ. Pollut., 265 (2020) 115018, doi: 10.1016/j.envpol.2020.115018.
  12. S. Martini, S. Afroze, K.A. Roni, Modified eucalyptus bark as a sorbent for simultaneous removal of COD, oil, and Cr(III) from industrial wastewater, Alexandria Eng. J., 59 (2020) 1637–1648.
  13. L. Vimercati, M.F. Gatti, T. Gagliardi, F. Cuccaro, L. De Maria, A. Caputi, M. Quarato, A. Baldassarre, Environmental exposure to arsenic and chromium in an industrial area, Environ. Sci. Pollut. Res., 24 (2017) 11528–11535.
  14. Y. Ye, X. Yu, L. Zhang, Q. Li, F. Pan, D. Xia, Effect of organic ligands on the removal of Cr(III) from water by coagulation process, Desal. Water Treat., 228 (202) 253–260.
  15. J. Zhang, C.H. Xue, H.R. Ma, Y.R. Ding, S.T. Jia, Fabrication of PAN electrospun nanofibers modified by tannin for effective removal of trace Cr(III) in organic complex from wastewater, Polymers, 12 (2020) 210, doi:10.3390/polym12010210.
  16. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metals toxicity and the environment, Mol. Clin. Environ. Toxicol., 101 (2012) 133–164.
  17. D. Huang, G. Wang, Z. Shi, Z. Li, F. Kang, F. Liu, Removal of hexavalent chromium in natural groundwater using activated carbon and cast iron combined system, J. Cleaner Prod., 165 (2017) 667–676.
  18. K.G. Pavithra, P.S. Kumar, F.C. Christopher, A. Saravanan, Removal of toxic Cr(VI) ions from tannery industrial wastewater using a newly designed three-phase three-dimensional electrode reactor, J. Phys. Chem. Solids, 110 (2017) 379–385.
  19. G. Wang, Q. Chang, M. Zhang, X. Han, Effect of pH on the removal of Cr(III) and Cr(VI) from aqueous solution by modified polyethyleneimine, React. Funct. Polym., 73 (2013) 1439–1446.
  20. L. Pietrelli, I. Francolini, A. Piozzi, M. Sighicelli, I. Silvestro, M. Vocciante, Chromium(III) removal from wastewater by chitosan flakes, Appl. Sci., 10 (2020) 1925, doi: 10.3390/app10061925.
  21. A. Çimen, M. Torun, A. Bilgiç, Immobilization of 4-amino-2-hydroxyacetophenone onto silica gel surface and sorption studies of Cu(II), Ni(II), and Co(II) ions, Desal. Water Treat., 53 (2015) 2106–2116.
  22. Y. Du, M. Dai, J. Cao, C. Peng, Fabrication of a low-cost adsorbent supported zero-valent iron by using red mud for removing Pb(II) and Cr(VI) from aqueous solutions, RSC Adv., 9 (2019) 33486–33496.
  23. A. Çimen, A. Bilgiç, İ. Yılmaz, Chemical modification of silica gel with hydrazine carbothioamide derivative for sorption studies of Cu(II), Ni(II) and Co(II) ions, Desal. Water Treat., 55 (2015) 420–430.
  24. Y. Tang, J. Zhao, J. Zhao, Y. Zeng, W. Zhang, B. Shi, Highly efficient removal of Cr(III)-poly(acrylic acid) complex by co-precipitation with polyvalent metal ions: performance, mechanism, and validation, Water Res., 178 (2020) 115807, doi: 10.1016/j.watres.2020.115807.
  25. A. Çimen, A. Bilgiç, Removal of Cu(II), Co(II) and Ni(II) ions from aqueous solutions using modified Sporopollenin, J. Appl. Biol. Sci., 12 (2018) 42–44.
  26. T. Guimarães, L.D. Paquini, B.R.L. Ferraz, L.P.R. Profeti, D. Profeti, Efficient removal of Cu(II) and Cr(III) contaminants from aqueous solutions using marble waste powder, J. Environ. Chem. Eng., 8 (2020) 103972, doi: 10.1016/j. jece.2020.103972.
  27. G.P. Schoeler, T.F. Afonso, R. de Avila Delucis, B.C. Okeke, R. Andreazza, Removal of Cr(III) from water by polyurethane foam incorporated with green liquor dregs waste, Europe BMC, (2021),
    doi: 10.21203/rs.3.rs-595298/v1.
  28. A. Bilgiç, H.S. Karapınar, APTMS-BCAD modified magnetic iron oxide for magnetic solid-phase extraction of Cu(II) from aqueous solutions, Heliyon, 8 (2022) e09645, doi: 10.1016/j.heliyon.2022.e09645.
  29. J. Liu, Y. Chen, S. Jiang, J. Huang, Y. Lv, Y. Liu, M. Liu, Rapid removal of Cr(III) from high-salinity wastewater by cellulose-g-poly-(acrylamide-co-sulfonic acid) polymeric bioadsorbent, Carbohydr. Polym., 270 (2021) 118356, doi: 10.1016/j.carbpol.2021.118356.
  30. M. Naushad, T. Ahamad, G. Sharma, H. Ala’a, A.B. Albadarin, M.M. Alam, A.A. Ghfar, Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion, Chem. Eng. J., 300 (2016) 306–316.
  31. S. Zhang, C. Liu, Y. Yuan, M. Fan, D. Zhang, D. Wang, Y. Xu, Selective, highly efficient extraction of Cr(III), Pb(II) and Fe(III) from complex water environment with a tea residue derived porous gel adsorbent, Bioresour. Technol., 311 (2020) 123520, doi: 10.1016/j.biortech.2020.123520.
  32. J. Wang, Y. Chen, T. Sun, A. Saleem, C. Wang, Enhanced removal of Cr(III)-EDTA chelates from high-salinity water by ternary complex formation on DETA functionalized magnetic carbonbased adsorbents, Ecotoxicol. Environ. Saf., 209 (2021) 111858, doi: 10.1016/j.ecoenv.2020.111858.
  33. D. Balarak, H. Azarpira, F.K. Mostafapour, Thermodynamics of removal of cadmium by adsorption on barley husk biomass, Der Pharma Chemica, 8 (2016) 243–247.
  34. A. Cimen, A. Bilgic, Immobilization of 2-(2-hydroxybenzylidinoamino) pyridin-3-ol on silica gel and application to industrial wastewater, Desal. Water Treat., 147 (2019) 116–124.
  35. C. Bai, L. Wang, Z. Zhu, Adsorption of Cr(III) and Pb(II) by graphene oxide/alginate hydrogel membrane: characterization, adsorption kinetics, isotherm and thermodynamics studies, Int. J. Biol. Macromol., 147 (2020) 898–910.
  36. H. Wu, Y. Xiao, Y. Guo, S. Miao, Q. Chen, Z. Chen, Functionalization of SBA-15 mesoporous materials with
    2-acetylthiophene for adsorption of Cr(III) ions, Microporous Mesoporous Mater., 292 (2020) 109754, doi:10.1016/j.micromeso.2019.109754.
  37. L. Wu, W. Wan, Z. Shang, X. Gao, N. Kobayashi, G. Luo, Z. Li, Surface modification of phosphoric acid activated carbon by using non-thermal plasma for enhancement of Cu(II) adsorption from aqueous solutions, Sep. Purif. Technol., 197 (2018) 156–169.
  38. Y. Ho, J. Ng, G. McKay, Kinetics of pollutant sorption by biosorbents, Sep. Purif. Methods, 29 (2000) 189–232.
  39. S. Anush, B. Vishalakshi, Modified chitosan gel incorporated with magnetic nanoparticle for removal of Cu(II) and Cr(VI) from aqueous solution, Int. J. Biol. Macromol., 133 (2019) 1051–1062.
  40. Y. Ren, X. Wei, M. Zhang, Adsorption character for removal Cu(II) by magnetic Cu(II) ion imprinted composite adsorbent, J. Hazard. Mater., 158 (2008) 14–22.
  41. J. Wang, M. Mao, S. Atif, Y. Chen, Adsorption behavior and mechanism of aqueous Cr(III) and Cr(III)-EDTA chelates on DTPA-chitosan modified Fe3O4@SiO2, React. Funct. Polym., 156 (2020) 104720, doi: 10.1016/j.reactfunctpolym.2020.104720.
  42. M. Cea, J. Seaman, A. Jara, M. Mora, M. Diez, Kinetic and thermodynamic study of chlorophenol sorption in an allophanic soil, Chemosphere, 78 (2010) 86–89.
  43. J. Zhang, M. Yan, G. Sun, K. Liu, An environment-friendly Fe3O4@CFAS porous ceramic: adsorption of Cu(II) ions and process optimisation using response surface methodology, Ceram. Int., 47 (2021) 8256–8264.
  44. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  45. M. Mubarak, H. Jeon, M.S. Islam, C. Yoon, J.-S. Bae, S.-J. Hwang, W. San Choi, H.-J. Lee, One-pot synthesis of layered double hydroxide hollow nanospheres with ultrafast removal efficiency for heavy metal ions and organic contaminants, Chemosphere, 201 (2018) 676–686.
  46. A. Çimen, A. Bilgiç, İ. Yılmaz, A. Cukurovali, Chemical modification of silica gel surface with a carbothioamide Schiff base for removal of Cr(III) ions from wastewater samples, Desal. Water Treat., 183 (2020) 222–232.
  47. W. Liu, J. Ni, X. Yin, Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO2 and titanate nanotubes, Water Res., 53 (2014) 12–25.
  48. N.C. Joshi, K. Kaur, N. Kumar, N.S. Bhandari, A. Thakur, Synthesis and adsorption applications of PPY/Fe3O4 nanocomposite based material, Nano-Struct. Nano-Objects, 25 (2021) 100669, doi:10.1016/j.nanoso.2021.100669.
  49. C.-J. Tang, X. Chen, F. Feng, Z.-G. Liu, Y.-X. Song, Y.-Y. Wang, X. Tang, Roles of bacterial cell and extracellular polymeric substance on adsorption of Cu(II) in activated sludges: a comparative study, J. Water Process Eng., 41 (2021) 102094, doi: 10.1016/j.jwpe.2021.102094.
  50. A. Gamal, A.G. Ibrahim, E.M. Eliwa, A.H. El-Zomrawy, S.M. El-Bahy, Synthesis and characterization of a novel benzothiazole functionalized chitosan and its use for effective adsorption of Cu(II), Int. J. Biol. Macromol., 183 (2021) 1283–1292.
  51. A. Bilgiç, A. Çimen, Synthesis, characterization, adsorption studies and comparison of superparamagnetic iron oxide nanoparticles (SPION) with three different amine groups functionalized with BODIPY for the removal of Cr(VI) metal ions from aqueous solutions, Int. J. Environ. Anal. Chem., (2021) 1–26, doi:10.1080/03067319.2021.1884240.
  52. A. Bilgiç, A. Çimen, Removal of chromium(VI) from polluted wastewater by chemical modification of silica gel with 4-acetyl-3-hydroxyaniline, RSC Adv., 9 (2019) 37403–37414.
  53. E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq., 273 (2019) 425–434.
  54. Y. Liu, Is the free energy change of adsorption correctly calculated?, J. Chem. Eng. Data, 54 (2009) 1981–1985.
  55. E.C. Lima, A.A. Gomes, H.N. Tran, Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (ΔS° and ΔH°), J. Mol. Liq., 311 (2020) 113315, doi:10.1016/j.molliq.2020.113315.
  56. M. Tahergorabi, A. Esrafili, M. Kermani, M. Shirzad-Siboni, Application of thiol-functionalized mesoporous silica-coated magnetite nanoparticles for the adsorption of heavy metals, Desal. Water Treat., 57 (2016) 19834–19845.
  57. S. Mor, K. Ravindra, N. Bishnoi, Adsorption of chromium from aqueous solution by activated alumina and activated charcoal, Bioresour. Technol., 98 (2007) 954–957.
  58. S. Babel, T.A. Kurniawan, Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan, Chemosphere, 54 (2004) 951–967.
  59. V.K. Gupta, I. Ali, Removal of lead and chromium from wastewater using bagasse fly ash-a sugar industry waste, J. Colloid Interface Sci., 271 (2004) 321–328.
  60. U.R. Malik, S.M. Hasany, M.S. Subhani, Sorptive potential of sunflower stem for Cr(III) ions from aqueous solutions and its kinetic and thermodynamic profile, Talanta, 66 (2005) 166–173.
  61. S. Tamjidi, H. Esmaeili, Chemically modified CaO/Fe3O4 nanocomposite by sodium dodecyl sulfate for Cr(III) removal from water, Chem. Eng. Technol., 42 (2019) 607–616.
  62. M.F. Sawalha, J.R. Peralta-Videa, G.B. Saupe, K.M. Dokken, J.L. Gardea-Torresdey, Using FTIR to corroborate the identity of functional groups involved in the binding of Cd and Cr to saltbush (Atriplex canescens) biomass, Chemosphere, 66 (2007) 1424–1430.
  63. N. Wu, H. Wei, L. Zhang, Efficient removal of heavy metal ions with biopolymer template synthesized mesoporous titania beads of hundreds of micrometers size, Environ. Sci. Technol., 46 (2012) 419–425.
  64. G.-R.R. Bernardo, R.-M.J. Rene, Chromium(III) uptake by agro-waste biosorbents: chemical characterization, sorption–desorption studies, and mechanism, J. Hazard. Mater., 170 (2009) 845–854.
  65. S. Ranasinghe, A. Navaratne, N. Priyantha, Enhancement of adsorption characteristics of Cr(III) and Ni(II) by surface modification of jackfruit peel biosorbent, J. Environ. Chem. Eng., 6 (2018) 5670–5682.
  66. F. Han, L. Wang, Y. Li, S. Di, Application of thermally modified fly ash for adsorption of Ni(II) and Cr(III) from aqueous solution: equilibrium, kinetic, and thermodynamic studies, Environ. Eng. Sci., 34 (2017) 508–515.
  67. Z. Li, X. Chang, Z. Hu, X. Huang, X. Zou, Q. Wu, R. Nie, Zincon-modified activated carbon for solid-phase extraction and preconcentration of trace lead and chromium from environmental samples, J. Hazard. Mater., 166 (2009) 133–137.
  68. M. Gheju, A. Iovi, I. Balcu, Hexavalent chromium reduction with scrap iron in continuous-flow system: Part 1: Effect of feed solution pH, J. Hazard. Mater., 153 (2008) 655–662.
  69. R.A. Abu-Zurayk, R.Z. Al Bakain, I. Hamadneh, A.H. Al-Dujaili, Adsorption of Pb(II), Cr(III) and Cr(VI) from aqueous solution by surfactant-modified diatomaceous earth: equilibrium, kinetic and thermodynamic modeling studies, Int. J. Miner. Process, 140 (2015) 79–87.
  70. Y. Jiang, Q. Gao, H. Yu, Y. Chen, F. Deng, Intensively competitive adsorption for heavy metal ions
    by PAMAM-SBA-15 and EDTA-PAMAM-SBA-15 inorganic–organic hybrid materials, Microporous Mesoporous Mater., 103 (2007) 316–324.
  71. A. Çimen, A. Bilgiç, B. Karademir, Synthesis of eco-friendly Sp-EN-CPA adsorbent and its application for removal of Cr(VI) from aqueous solutions, Desal. Water Treat., 225 (2021) 287–299.
  72. D. Balarak, M. Zafariyan, C.A. Igwegbe, K.K. Onyechi, J.O. Ighalo, Adsorption of acid blue 92 dye from aqueous solutions by single-walled carbon nanotubes: isothermal, kinetic, and thermodynamic studies, Environ. Processes, 8 (2021) 869–888.
  73. X. Han, Y.S. Wong, N.F.Y. Tam, Surface complexation mechanism and modeling in Cr(III) biosorption by a microalgal isolate, Chlorella miniata, J. Colloid Interface Sci., 303 (2006) 365–371.
  74. W.W. Ngah, S. Fatinathan, Adsorption characterization of Pb(II) and Cu(II) ions onto
    chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies, J. Environ. Manage., 91 (2010) 958–969.
  75. F. Kiliçel, H. Karapinar, Determination of trace element contents of some spice samples by using FAAS, Asian J. Chem., 30 (2018) 1551–1558.