References
- M.L. Sall, A.K.D. Diaw, D. Gningue-Sall, S. Efremova Aaron,
J.-J. Aaron, Toxic heavy metals: impact on the environment
and human health, and treatment with conducting organic
polymers, a review, Environ. Sci. Pollut. Res., 27 (2020)
29927–29942.
- T.O. Ajiboye, O.A. Oyewo, D.C. Onwudiwe, Simultaneous
removal of organics and heavy metals from industrial
wastewater: a review, Chemosphere, 26 (2021) 128379,
doi: 10.1016/j.chemosphere.2020.128379.
- S. Ali, Z. Abbas, M. Rizwan, I.E. Zaheer, I. Yavaş, A. Ünay,
M.M. Abdel-DAIM, M. Bin-Jumah, M. Hasanuzzaman,
D. Kalderis, Application of floating aquatic plants in
phytoremediation of heavy metals polluted water:
a review,
Sustainability, 12 (2020) 1927, doi: 10.3390/su12051927.
- C. Santhosh, R. Nivetha, P. Kollu, V. Srivastava, M. Sillanpää,
A.N. Grace, A. Bhatnagar, Removal of cationic and anionic
heavy metals from water by 1D and 2D-carbon structures
decorated with magnetic nanoparticles, Sci. Rep., 7 (2017)
14107, doi: 10.1038/s41598-017-14461-2.
- A. Singh, P. Khare, S. Verma, A. Bhati, A.K. Sonker,
K.M. Tripathi, S.K. Sonkar, Pollutant soot for pollutant dye
degradation: soluble graphene nanosheets for visible light
induced photodegradation of methylene blue, ACS Sustainable
Chem. Eng., 5 (2017) 8860–8869.
- T.S. Anirudhan, S.S. Sreekumari, Adsorptive removal of heavy
metal ions from industrial effluents using activated carbon
derived from waste coconut buttons, J. Environ. Sci., 23 (2011)
1989–1998.
- A.H. Mahvi, D. Balarak, E. Bazrafshan, Remarkable reusability
of magnetic Fe3O4-graphene oxide composite:
a highly effective
adsorbent for Cr(VI) ions, Int. J. Environ. Anal. Chem., (2021)
1–21, doi:10.1080/03067319.20211910250.
- X. Fang, J. Li, X. Li, S. Pan, X. Zhang, X. Sun, J. Shen,
W. Han, L. Wang, Internal pore decoration with polydopamine
nanoparticle on polymeric ultrafiltration membrane for
enhanced heavy metal removal, Chem. Eng. J., 314 (2017)
38–49.
- Y. Li, Z. Xu, S. Liu, J. Zhang, X. Yang, Molecular simulation
of reverse osmosis for heavy metal ions using functionalized
nanoporous graphenes, Comput. Mater. Sci., 139 (2017) 65–74.
- B. Eyvazi, A. Jamshidi-Zanjani, A.K. Darban, Immobilization
of hexavalent chromium in contaminated soil using nanomagnetic
MnFe2O4, J. Hazard. Mater., 365 (2019) 813–819.
- Y. Qiu, Q. Zhang, B. Gao, M. Li, Z. Fan, W. Sang, H. Hao,
X. Wei, Removal mechanisms of Cr(VI) and Cr(III) by biochar
supported nanosized zero-valent iron: synergy of adsorption,
reduction and transformation, Environ. Pollut., 265 (2020)
115018, doi: 10.1016/j.envpol.2020.115018.
- S. Martini, S. Afroze, K.A. Roni, Modified eucalyptus bark as
a sorbent for simultaneous removal of COD, oil, and Cr(III)
from industrial wastewater, Alexandria Eng. J., 59 (2020)
1637–1648.
- L. Vimercati, M.F. Gatti, T. Gagliardi, F. Cuccaro, L. De Maria,
A. Caputi, M. Quarato, A. Baldassarre, Environmental exposure
to arsenic and chromium in an industrial area, Environ. Sci.
Pollut. Res., 24 (2017) 11528–11535.
- Y. Ye, X. Yu, L. Zhang, Q. Li, F. Pan, D. Xia, Effect of organic
ligands on the removal of Cr(III) from water by coagulation
process, Desal. Water Treat., 228 (202) 253–260.
- J. Zhang, C.H. Xue, H.R. Ma, Y.R. Ding, S.T. Jia, Fabrication of
PAN electrospun nanofibers modified by tannin for effective
removal of trace Cr(III) in organic complex from wastewater,
Polymers, 12 (2020) 210, doi:10.3390/polym12010210.
- P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy
metals toxicity and the environment, Mol. Clin. Environ.
Toxicol., 101 (2012) 133–164.
- D. Huang, G. Wang, Z. Shi, Z. Li, F. Kang, F. Liu, Removal of
hexavalent chromium in natural groundwater using activated
carbon and cast iron combined system, J. Cleaner Prod.,
165 (2017) 667–676.
- K.G. Pavithra, P.S. Kumar, F.C. Christopher, A. Saravanan,
Removal of toxic Cr(VI) ions from tannery industrial wastewater
using a newly designed three-phase three-dimensional
electrode reactor, J. Phys. Chem. Solids, 110 (2017) 379–385.
- G. Wang, Q. Chang, M. Zhang, X. Han, Effect of pH on the
removal of Cr(III) and Cr(VI) from aqueous solution by
modified polyethyleneimine, React. Funct. Polym., 73 (2013)
1439–1446.
- L. Pietrelli, I. Francolini, A. Piozzi, M. Sighicelli, I. Silvestro,
M. Vocciante, Chromium(III) removal from wastewater by chitosan
flakes, Appl. Sci., 10 (2020) 1925, doi: 10.3390/app10061925.
- A. Çimen, M. Torun, A. Bilgiç, Immobilization of 4-amino-2-hydroxyacetophenone onto silica gel surface and sorption
studies of Cu(II), Ni(II), and Co(II) ions, Desal. Water Treat.,
53 (2015) 2106–2116.
- Y. Du, M. Dai, J. Cao, C. Peng, Fabrication of a low-cost
adsorbent supported zero-valent iron by using red mud for
removing Pb(II) and Cr(VI) from aqueous solutions, RSC Adv.,
9 (2019) 33486–33496.
- A. Çimen, A. Bilgiç, İ. Yılmaz, Chemical modification of silica
gel with hydrazine carbothioamide derivative for sorption
studies of Cu(II), Ni(II) and Co(II) ions, Desal. Water Treat.,
55 (2015) 420–430.
- Y. Tang, J. Zhao, J. Zhao, Y. Zeng, W. Zhang, B. Shi, Highly
efficient removal of Cr(III)-poly(acrylic acid) complex by
co-precipitation with polyvalent metal ions: performance,
mechanism, and validation, Water Res., 178 (2020) 115807,
doi: 10.1016/j.watres.2020.115807.
- A. Çimen, A. Bilgiç, Removal of Cu(II), Co(II) and Ni(II) ions
from aqueous solutions using modified Sporopollenin, J. Appl.
Biol. Sci., 12 (2018) 42–44.
- T. Guimarães, L.D. Paquini, B.R.L. Ferraz, L.P.R. Profeti,
D. Profeti, Efficient removal of Cu(II) and Cr(III) contaminants
from aqueous solutions using marble waste powder,
J. Environ. Chem. Eng., 8 (2020) 103972, doi: 10.1016/j.
jece.2020.103972.
- G.P. Schoeler, T.F. Afonso, R. de Avila Delucis, B.C. Okeke,
R. Andreazza, Removal of Cr(III) from water by polyurethane
foam incorporated with green liquor dregs waste, Europe BMC,
(2021),
doi: 10.21203/rs.3.rs-595298/v1.
- A. Bilgiç, H.S. Karapınar, APTMS-BCAD modified magnetic
iron oxide for magnetic solid-phase extraction of Cu(II) from
aqueous solutions, Heliyon, 8 (2022) e09645, doi: 10.1016/j.heliyon.2022.e09645.
- J. Liu, Y. Chen, S. Jiang, J. Huang, Y. Lv, Y. Liu, M. Liu,
Rapid removal of Cr(III) from high-salinity wastewater by
cellulose-g-poly-(acrylamide-co-sulfonic acid) polymeric bioadsorbent,
Carbohydr. Polym., 270 (2021) 118356, doi: 10.1016/j.carbpol.2021.118356.
- M. Naushad, T. Ahamad, G. Sharma, H. Ala’a, A.B. Albadarin,
M.M. Alam, A.A. Ghfar, Synthesis and characterization of a
new starch/SnO2 nanocomposite for efficient adsorption of
toxic Hg2+ metal ion, Chem. Eng. J., 300 (2016) 306–316.
- S. Zhang, C. Liu, Y. Yuan, M. Fan, D. Zhang, D. Wang, Y. Xu,
Selective, highly efficient extraction of Cr(III), Pb(II) and Fe(III)
from complex water environment with a tea residue derived
porous gel adsorbent, Bioresour. Technol., 311 (2020) 123520,
doi: 10.1016/j.biortech.2020.123520.
- J. Wang, Y. Chen, T. Sun, A. Saleem, C. Wang, Enhanced removal
of Cr(III)-EDTA chelates from high-salinity water by ternary
complex formation on DETA functionalized magnetic carbonbased
adsorbents, Ecotoxicol. Environ. Saf., 209 (2021) 111858,
doi: 10.1016/j.ecoenv.2020.111858.
- D. Balarak, H. Azarpira, F.K. Mostafapour, Thermodynamics
of removal of cadmium by adsorption on barley husk biomass,
Der Pharma Chemica, 8 (2016) 243–247.
- A. Cimen, A. Bilgic, Immobilization of
2-(2-hydroxybenzylidinoamino) pyridin-3-ol on silica gel
and application to industrial wastewater, Desal. Water Treat.,
147 (2019) 116–124.
- C. Bai, L. Wang, Z. Zhu, Adsorption of Cr(III) and Pb(II) by
graphene oxide/alginate hydrogel membrane: characterization,
adsorption kinetics, isotherm and thermodynamics studies, Int.
J. Biol. Macromol., 147 (2020) 898–910.
- H. Wu, Y. Xiao, Y. Guo, S. Miao, Q. Chen, Z. Chen,
Functionalization of SBA-15 mesoporous materials with
2-acetylthiophene for adsorption of Cr(III) ions, Microporous
Mesoporous Mater., 292 (2020) 109754, doi:10.1016/j.micromeso.2019.109754.
- L. Wu, W. Wan, Z. Shang, X. Gao, N. Kobayashi, G. Luo,
Z. Li, Surface modification of phosphoric acid activated
carbon by using non-thermal plasma for enhancement of
Cu(II) adsorption from aqueous solutions, Sep. Purif. Technol.,
197 (2018) 156–169.
- Y. Ho, J. Ng, G. McKay, Kinetics of pollutant sorption by
biosorbents, Sep. Purif. Methods, 29 (2000) 189–232.
- S. Anush, B. Vishalakshi, Modified chitosan gel incorporated
with magnetic nanoparticle for removal of Cu(II) and Cr(VI)
from aqueous solution, Int. J. Biol. Macromol., 133 (2019)
1051–1062.
- Y. Ren, X. Wei, M. Zhang, Adsorption character for removal
Cu(II) by magnetic Cu(II) ion imprinted composite adsorbent,
J. Hazard. Mater., 158 (2008) 14–22.
- J. Wang, M. Mao, S. Atif, Y. Chen, Adsorption behavior and
mechanism of aqueous Cr(III) and Cr(III)-EDTA chelates on
DTPA-chitosan modified Fe3O4@SiO2, React. Funct. Polym.,
156 (2020) 104720, doi: 10.1016/j.reactfunctpolym.2020.104720.
- M. Cea, J. Seaman, A. Jara, M. Mora, M. Diez, Kinetic and
thermodynamic study of chlorophenol sorption in an allophanic
soil, Chemosphere, 78 (2010) 86–89.
- J. Zhang, M. Yan, G. Sun, K. Liu, An environment-friendly
Fe3O4@CFAS porous ceramic: adsorption of Cu(II) ions and
process optimisation using response surface methodology,
Ceram. Int., 47 (2021) 8256–8264.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- M. Mubarak, H. Jeon, M.S. Islam, C. Yoon, J.-S. Bae,
S.-J. Hwang, W. San Choi, H.-J. Lee, One-pot synthesis of layered
double hydroxide hollow nanospheres with ultrafast removal
efficiency for heavy metal ions and organic contaminants,
Chemosphere, 201 (2018) 676–686.
- A. Çimen, A. Bilgiç, İ. Yılmaz, A. Cukurovali, Chemical
modification of silica gel surface with a carbothioamide Schiff
base for removal of Cr(III) ions from wastewater samples, Desal.
Water Treat., 183 (2020) 222–232.
- W. Liu, J. Ni, X. Yin, Synergy of photocatalysis and adsorption
for simultaneous removal of Cr(VI) and Cr(III) with TiO2 and
titanate nanotubes, Water Res., 53 (2014) 12–25.
- N.C. Joshi, K. Kaur, N. Kumar, N.S. Bhandari, A. Thakur,
Synthesis and adsorption applications of PPY/Fe3O4 nanocomposite
based material, Nano-Struct. Nano-Objects, 25 (2021)
100669, doi:10.1016/j.nanoso.2021.100669.
- C.-J. Tang, X. Chen, F. Feng, Z.-G. Liu, Y.-X. Song, Y.-Y. Wang,
X. Tang, Roles of bacterial cell and extracellular polymeric
substance on adsorption of Cu(II) in activated sludges:
a comparative study, J. Water Process Eng., 41 (2021) 102094,
doi: 10.1016/j.jwpe.2021.102094.
- A. Gamal, A.G. Ibrahim, E.M. Eliwa, A.H. El-Zomrawy,
S.M. El-Bahy, Synthesis and characterization of a novel
benzothiazole functionalized chitosan and its use for effective
adsorption of Cu(II), Int. J. Biol. Macromol., 183 (2021)
1283–1292.
- A. Bilgiç, A. Çimen, Synthesis, characterization, adsorption
studies and comparison of superparamagnetic iron oxide
nanoparticles (SPION) with three different amine groups
functionalized with BODIPY for the removal of Cr(VI) metal
ions from aqueous solutions, Int. J. Environ. Anal. Chem., (2021)
1–26, doi:10.1080/03067319.2021.1884240.
- A. Bilgiç, A. Çimen, Removal of chromium(VI) from polluted
wastewater by chemical modification of silica gel with 4-acetyl-3-hydroxyaniline, RSC Adv., 9 (2019) 37403–37414.
- E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján,
I. Anastopoulos, A critical review of the estimation of the
thermodynamic parameters on adsorption equilibria. Wrong
use of equilibrium constant in the Van’t Hoof equation for
calculation of thermodynamic parameters of adsorption, J. Mol.
Liq., 273 (2019) 425–434.
- Y. Liu, Is the free energy change of adsorption correctly
calculated?, J. Chem. Eng. Data, 54 (2009) 1981–1985.
- E.C. Lima, A.A. Gomes, H.N. Tran, Comparison of the nonlinear
and linear forms of the van’t Hoff equation for calculation of
adsorption thermodynamic parameters (ΔS° and ΔH°), J. Mol.
Liq., 311 (2020) 113315, doi:10.1016/j.molliq.2020.113315.
- M. Tahergorabi, A. Esrafili, M. Kermani, M. Shirzad-Siboni,
Application of thiol-functionalized mesoporous silica-coated
magnetite nanoparticles for the adsorption of heavy metals,
Desal. Water Treat., 57 (2016) 19834–19845.
- S. Mor, K. Ravindra, N. Bishnoi, Adsorption of chromium from
aqueous solution by activated alumina and activated charcoal,
Bioresour. Technol., 98 (2007) 954–957.
- S. Babel, T.A. Kurniawan, Cr(VI) removal from synthetic
wastewater using coconut shell charcoal and commercial
activated carbon modified with oxidizing agents and/or
chitosan, Chemosphere, 54 (2004) 951–967.
- V.K. Gupta, I. Ali, Removal of lead and chromium from
wastewater using bagasse fly ash-a sugar industry waste,
J. Colloid Interface Sci., 271 (2004) 321–328.
- U.R. Malik, S.M. Hasany, M.S. Subhani, Sorptive potential of
sunflower stem for Cr(III) ions from aqueous solutions and its
kinetic and thermodynamic profile, Talanta, 66 (2005) 166–173.
- S. Tamjidi, H. Esmaeili, Chemically modified CaO/Fe3O4
nanocomposite by sodium dodecyl sulfate for Cr(III) removal
from water, Chem. Eng. Technol., 42 (2019) 607–616.
- M.F. Sawalha, J.R. Peralta-Videa, G.B. Saupe, K.M. Dokken,
J.L. Gardea-Torresdey, Using FTIR to corroborate the identity
of functional groups involved in the binding of Cd and Cr to
saltbush (Atriplex canescens) biomass, Chemosphere, 66 (2007)
1424–1430.
- N. Wu, H. Wei, L. Zhang, Efficient removal of heavy metal ions
with biopolymer template synthesized mesoporous titania
beads of hundreds of micrometers size, Environ. Sci. Technol.,
46 (2012) 419–425.
- G.-R.R. Bernardo, R.-M.J. Rene, Chromium(III) uptake by
agro-waste biosorbents: chemical characterization, sorption–desorption studies, and mechanism, J. Hazard. Mater.,
170 (2009) 845–854.
- S. Ranasinghe, A. Navaratne, N. Priyantha, Enhancement
of adsorption characteristics of Cr(III) and Ni(II) by surface
modification of jackfruit peel biosorbent, J. Environ. Chem.
Eng., 6 (2018) 5670–5682.
- F. Han, L. Wang, Y. Li, S. Di, Application of thermally modified
fly ash for adsorption of Ni(II) and Cr(III) from aqueous
solution: equilibrium, kinetic, and thermodynamic studies,
Environ. Eng. Sci., 34 (2017) 508–515.
- Z. Li, X. Chang, Z. Hu, X. Huang, X. Zou, Q. Wu, R. Nie,
Zincon-modified activated carbon for solid-phase extraction
and preconcentration of trace lead and chromium from
environmental samples, J. Hazard. Mater., 166 (2009) 133–137.
- M. Gheju, A. Iovi, I. Balcu, Hexavalent chromium reduction
with scrap iron in continuous-flow system: Part 1: Effect of feed
solution pH, J. Hazard. Mater., 153 (2008) 655–662.
- R.A. Abu-Zurayk, R.Z. Al Bakain, I. Hamadneh, A.H. Al-Dujaili,
Adsorption of Pb(II), Cr(III) and Cr(VI) from aqueous solution
by surfactant-modified diatomaceous earth: equilibrium,
kinetic and thermodynamic modeling studies, Int. J. Miner.
Process, 140 (2015) 79–87.
- Y. Jiang, Q. Gao, H. Yu, Y. Chen, F. Deng, Intensively competitive
adsorption for heavy metal ions
by PAMAM-SBA-15 and
EDTA-PAMAM-SBA-15 inorganic–organic hybrid materials,
Microporous Mesoporous Mater., 103 (2007) 316–324.
- A. Çimen, A. Bilgiç, B. Karademir, Synthesis of eco-friendly
Sp-EN-CPA adsorbent and its application for removal of Cr(VI)
from aqueous solutions, Desal. Water Treat., 225 (2021) 287–299.
- D. Balarak, M. Zafariyan, C.A. Igwegbe, K.K. Onyechi,
J.O. Ighalo, Adsorption of acid blue 92 dye from aqueous
solutions by single-walled carbon nanotubes: isothermal,
kinetic, and thermodynamic studies, Environ. Processes,
8 (2021) 869–888.
- X. Han, Y.S. Wong, N.F.Y. Tam, Surface complexation mechanism
and modeling in Cr(III) biosorption by a microalgal isolate,
Chlorella miniata, J. Colloid Interface Sci., 303 (2006) 365–371.
- W.W. Ngah, S. Fatinathan, Adsorption characterization of Pb(II)
and Cu(II) ions onto
chitosan-tripolyphosphate beads: kinetic,
equilibrium and thermodynamic studies, J. Environ. Manage.,
91 (2010) 958–969.
- F. Kiliçel, H. Karapinar, Determination of trace element contents
of some spice samples by using FAAS, Asian J. Chem., 30 (2018)
1551–1558.