References

  1. M. Karatas, Removal of Pb(II) from water by natural zeolitic tuff: kinetics and thermodynamics, J. Hazard. Mater., 199 (2012) 383–389.
  2. D. Xu, X.L. Tan, C.L. Chen, X.K. Wang, Adsorption of Pb(II) from aqueous solution to MX-80 bentonite: effect of pH, ionic strength, foreign ions and temperature, Appl. Clay Sci., 41 (2008) 37–46.
  3. X.W. Lu, X.A. Ning, P.H. Lee, K. Shih, F. Wang, E.Y. Zeng, Transformation of hazardous lead into lead ferrite ceramics: crystal structures and their role in lead leaching, J. Hazard. Mater., 336 (2017) 139–145.
  4. S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater., 97 (2003) 219–243.
  5. Y. Chammui, P. Sooksamiti, W. Naksata, S. Thiansem, O.A. Arqueropanyo, Removal of arsenic from aqueous solution by adsorption on leonardite, Chem. Eng. J., 240 (2014) 202–210.
  6. F. Wang, Y. Pan, P. Cai, T. Guo, H. Xiao, Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent, Bioresour. Technol., 241 (2017) 482–490.
  7. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  8. M. Hassan, R. Naidu, J. Du, Y. Liu, F. Qi, Critical review of magnetic biosorbents: their preparation, application, and regeneration for wastewater treatment, Sci. Total Environ., 702 (2019) 1–22.
  9. A.A. Basaleh, M.H. Al-Malack, T.A. Saleh, Poly(acrylamide acrylic acid)/baghouse dust magnetic composite hydrogel as an efficient adsorbent for metals and MB; synthesis, characterization, mechanism, and statistical analysis, Sustainable Chem. Pharm., 23 (2021) 1–13.
  10. O.A. Bin‑Dahman, T.A. Saleh, Synthesis of polyamide grafted on biosupport as polymeric adsorbents for the removal of dye and metal ions, Biomass Convers. Biorefin., (2022), doi: 10.1007/ s13399-022-02382-8.
  11. M.I. Inyang, B. Gao, Y. Yao, Y. Xue, A. Zimmerman, A. Mosa, P. Pullammanappallil, Y.S. Ok, X. Cao, A review of biochar as a low-cost adsorbent for aqueous heavy metal removal, Crit. Rev. Env. Sci. Technol., 46 (2016) 406–433.
  12. L.C.A. Melo, A.P. Puga, A.R. Coscione, L. Beesley, C.A. Abreu, O.A. Camargo, Sorption and desorption of cadmium and zinc in two tropical soils amended with sugarcane-straw-derived biochar, J. Soils Sediments, 16 (2016) 226–234.
  13. S.M. Yakout, E. Elsherif, Biosorption behavior of Sr2+ using straw-derived biochar: equilibrium and isotherm study, Desal. Water Treat., 57 (2015) 7262–7269.
  14. B. Li, L. Yang, C.Q. Wang, Q.P. Zhang, Q.C. Liu, Y.D. Li, R. Xiao, Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes, Chemosphere, 175 (2017) 332–340.
  15. H. Wang, B. Gao, S. Wang, J. Fang, Y. Xue, K. Yang, Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood, Bioresour. Technol., 197 (2015) 356–362.
  16. S.I. Mohammadabadi, V. Javanbakht, Fabrication of dual cross-linked spherical treated waste biomass/alginate adsorbent and its potential for efficient removal of lead ions from aqueous solutions, Ind. Crops Prod., 168 (2021) 1–13.
  17. M. Hassan, Y. Liu, R. Naidu, S.J. Parikh, I.R. Willett, Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: a meta-analysis, Sci. Total Environ., 744 (2020) 1–15.
  18. Z. Shen, D. Hou, F. Jin, J. Shi, X. Fan, D.C.W. Tsang, D.S. Alessi, Effect of production temperature on lead removal mechanisms by rice straw biochars, Sci. Total Environ., 655 (2019) 751–758.
  19. H. Gong, J. Chi, Z. Ding, F. Zhang, J. Huang, Removal of lead from two polluted soils by magnetic wheat straw biochars, Ecotoxicol. Environ. Saf., 205 (2020) 1–8.
  20. R. Amen, M. Yaseen, A. Mukhtar, J.J. Klemeš, S. Saqib, S. Ullah, A.G. Al-Sehemi, S. Rafiq, M. Babar, C.L. Fatt,
    M. Ibrahim, S. Asif, K.S. Qureshi, M.M. Akbar, A. Bokhari, Lead and cadmium removal from wastewater using eco-friendly biochar adsorbent derived from rice husk, wheat straw, and corncob, Cleaner Eng. Technol., 1 (2020) 1–11.
  21. N. Zhang, B. Tang, X.M. Liu, Cementitious activity of iron ore tailing and its utilization in cementitious materials, bricks and concrete, Constr. Build. Mater., 288 (2021) 1–14.
  22. Y.S. Liu, F. Du, L. Yuan, H. Zeng, S.F. Kong, Production of lightweight ceramisite from iron ore tailings and its performance investigation in a biological aerated filter (BAF) reactor, J. Hazard. Mater., 178 (2010) 999–1006.
  23. Y. He, Y. Lv, L. Han, Synthesis and adsorption property of mesoporous molecular sieve MCM-41 from iron ore tailings, Adv. Mater. Res., 92 (2010) 255–262.
  24. K. Wang, B. Xing, Adsorption and desorption of cadmium by goethite pretreated with phosphate, Chemosphere, 48 (2002) 665–670.
  25. V. Balasundram, N. Alias, N. Ibrahim, R.M. Kasmani, H. Hasbullah, Thermal characterization of Malaysian biomass via thermogravimetric analysis, J. Energy Saf. Technol., 1 (2018) 31–38.
  26. I.A. Rahman, J. Ismail, Preparation and characterization of a spherical gel from a low-cost material, J. Mater. Chem., 3 (1993) 931–934.
  27. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051–1069.
  28. L.M.M. Machado, S.F. Lütke, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C. Collazzo, G.L. Dotto, Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars, J. Environ. Chem. Eng., 8 (2020) 1–8.
  29. Z. Tang, P. Gao, Y. Li, Y. Han, W. Li, S. Butt, Y. Zhang, Recovery of iron from hazardous tailings using fluidized roasting coupling technology, Powder Technol., 361 (2020) 591–599.
  30. M. Hassan, A.K. Deb, F. Qi, Y. Liu, M. Hassan, Magnetically separable mesoporous alginate polymer beads assist adequate removal of aqueous methylene blue over broad solution pH, J. Cleaner Prod., 319 (2021) 1–15.
  31. M. Hassan, Y. Liu, R. Naidu, J. Du, F. Qi, S.W. Donne, M.M. Islam, Mesoporous biopolymer architecture enhanced the adsorption and selectivity of aqueous heavy-metal ions, ACS Omega, 6 (2021) 15316–15331.
  32. X. Li, C. Zhu, G. Xu, X. Han, Removal of Pb(II) with amorphous titanium(IV) hydrogen phosphate loaded on SiO2, Chin. J. Environ. Eng., 8 (2014) 1510–1514 (in Chinese).
  33. A. Demirbas, Heavy metal adsorption onto agro-based waste materials: a review, J. Hazard. Mater., 157 (2008) 220–229.
  34. J.X. Yu, L.Y. Wang, R.A. Chi, Y.F. Zhang, Z.G. Xu, J. Guo, Competitive adsorption of Pb2+ and Cd2+ on magnetic modified sugarcane bagasse prepared by two simple steps, Appl. Surf. Sci., 268 (2013) 163–170.
  35. H. Chen, J. Zhao, G. Dai, J. Wu, H. Yan, Adsorption characteristics of Pb(II) from aqueous solution onto a natural biosorbent, fallen Cinnamomum camphora leaves, Desalination, 262 (2010) 174–182.
  36. X. Xu, X. Cao, L. Zhao, H. Wang, H. Yu, B. Gao, Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manurederived biochar, Environ. Sci. Pollut. Res. Int., 20 (2013) 358–368.
  37. N. Zhao, B. Li, H.M. Huang, X.M. Lv, M.G. Zhang, L. Cao, Modification of kelp and sludge biochar by TMT-102 and NaOH for cadmium adsorption, J. Taiwan Inst. Chem. Eng., 116 (2020) 101–111.
  38. Y. Jin, M. Zhang, Z.H. Jin, G.L. Wang, R. Li, X. Zhang, X.S. Liu, J.J. Qu, H.M. Wang, Characterization of biochars derived from various spent mushroom substrates and evaluation of their adsorption performance of Cu(II) ions from aqueous solution, Environ. Res., 196 (2021) 1–14.
  39. P. Mondal, C.B. Majumder, B. Mohanty, Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon, J. Hazard. Mater., 150 (2008) 695–702.
  40. P. Zhang, O. David, Y. Wang, L. Jiang, T.X. Xia, L.W. Wang, C.W.T. Daniel, S.O. Yong, D.Y. Hou, A green biochar/iron oxide composite for methylene blue removal, J. Hazard. Mater., 384 (2020) 1–8.
  41. A.R. Lucaci, D. Bulgariu, I. Ahmad, G. Lisă, A.M. Mocanu, L. Bulgariu, Potential use of biochar from various waste biomass as biosorbent in Co(II) removal processes, Water, 11 (2019) 1–15.
  42. H. Jin, S. Capareda, Z. Chang, J. Gao, Y. Xu, J. Zhang, Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: adsorption property and its improvement with KOH activation, Bioresour. Technol., 169 (2014) 622–629.
  43. A.A. Adenuga, O.D. Amos, J.A.O. Oyekunle, E.H. Umukoro, Adsorption performance and mechanism
    of a low-cost biosorbent from spent seedcake of Calophyllum inophyllum in simultaneous cleanup of potentially toxic metals from industrial wastewater, J. Environ. Chem. Eng., 7 (2019) 1–9.
  44. I. Morosanu, C. Teodosiu, D. Fighir, C. Paduraru, Simultaneous biosorption of micropollutants from aqueous effluents by rapeseed waste, Process Saf. Environ. Prot., 132 (2019) 231–239.
  45. M. Pakdel, S. Soleimanian-Zad, S. Akbari-Alavijeh, Screening of lactic acid bacteria to detect potent biosorbents of lead and cadmium, Food Control, 100 (2019) 144–150.
  46. F.A. Tapouk, R. Nabizadeh, S. Nasseri, A. Mesdaghinia, H. Khorsandi, A.H. Mahvi, E. Gholibegloo,
    M. Alimohammadi, M. Khoobi, Endotoxin removal from aqueous solutions with dimethylamine-functionalized graphene oxide: modeling study and optimization of adsorption parameters, J. Hazard. Mater., 368 (2019) 163–177.
  47. P. Ndagijimana, X.J. Liu, Z.W. Li, G.W. Yu, Y. Wang, Optimized synthesis of a core-shell structure activated carbon and its adsorption performance for bisphenol A, Sci. Total Environ., 689 (2019) 457–468.
  48. Y.H. Wu, Y. Fan, M.L. Zhang, S.X. Yang, A. Arkin, P Fang, Functionalized agricultural biomass as a low-cost adsorbent: utilization of rice straw incorporated with amine groups for the adsorption of Cr(VI) and Ni(II) from single and binary systems, Biochem. Eng. J., 105 (2016) 27–35.
  49. E. Hodgson, A. Lewys-James, S.R. Ravella, S. Thomas-Jones, J. Gallagher, Optimisation of slow-pyrolysis process conditions to maximise char yield and heavy metal adsorption of biochar produced from different feedstocks, Bioresour. Technol., 214 (2016) 574–581.
  50. Ihsanullah, A. Abbas, A.M. Al-Amer, T. Laoui, M.A. Atieh, Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications, Sep. Purif. Technol., 157 (2016) 141–161.
  51. Y.D. Chen, S.H. Ho, D. Wang, Z.S. Wei, J.S. Chang, N.Q. Ren, Lead removal by a magnetic biochar derived from persulfate- ZVI treated sludge together with one-pot pyrolysis, Bioresour. Technol., 247 (2017) 463–470.
  52. C. Nzediegwu, M.A. Naeth, S.X. Chang, Lead(II) adsorption on microwave-pyrolyzed biochars and hydrochars depends on feedstock type and production temperature, J. Hazard. Mater., 412 (2021) 1–12.
  53. L. Trakal, V. Veselská, I. Šafařík, M. Vítková, S. Číhalová, M. Komárek, Lead and cadmium sorption mechanisms on magnetically modified biochars, Bioresour. Technol., 203 (2016) 318–324.
  54. M.A.P. Cechinel, S.M.A.G. De-Souza, A.A.U. De-Souza, Study of lead(II) adsorption onto activated carbon originating from cow bone, J. Cleaner Prod., 65 (2014) 342–349.
  55. J.H. Kwak, M.S. Islam, S. Wang, S.A. Messele, M.A. Naeth, M.G. El-Din, S.X. Chang, Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation, Chemosphere, 231 (2019) 393–404.
  56. J. Shi, X. Fan, D.C.W. Tsang, F. Wang, Z. Shen, D. Hou, D.S. Alessi, Removal of lead by rice husk biochars produced at different temperatures and implications for their environmental utilizations, Chemosphere, 235 (2019) 825–831.
  57. Y.H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, B. Wei, Lead adsorption on carbon nanotubes, Chem. Phys. Lett., 357 (2002) 263–266.
  58. W. Chen, Z. Lu, B. Xiao, P. Gu, W. Yao, J. Xing, A.M. Asiri, K.A. Alamry, X Wang, S. Wang, Enhanced removal of lead ions from aqueous solution by iron oxide nanomaterials with cobalt and nickel doping, J. Cleaner Prod., 211 (2019) 1250–1258.
  59. K. Chen, J. He, Y. Li, X. Cai, K. Zhang, T. Liu, Y. Hu, D. Lin, L. Kong, J. Liu, Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents, J. Colloid Interface, 494 (2017) 307–316.
  60. Z. Shi, C. Xu, H. Guan, L. Li, L. Fan, Y. Wang, L. Liu, Q. Meng, R. Zhang, Magnetic metal–organic frameworks (MOFs) composite for removal of lead and malachite green in wastewater, Colloids Surf., A, 539 (2017) 382–390.
  61. X. Du, M.J. Zhao, Z.C. Ma, S.T. Xing, Adsorption properties for Pb2+ removal onto biochars from different sources of biomass feedstock, J. Yanshan Univ., 40 (2016) 552–560 (in Chinese).
  62. Q. Zeng, S.X. Wang, L. Hu, H. Zhong, Z.G. He, W. Sun, D.L. Xiong, Oxalic acid modified copper tailings as an efficient adsorbent with super high capacities for the removal of Pb2+, Chemosphere, 263 (2021) 127833, doi: 10.1016/j.chemosphere.2020.127833.
  63. T.A. Saleh, V.K. Gupta, Characterization of the chemical bonding between Al2O3 and nanotube in
    MWCNT/Al2O3 nanocomposite, Curr. Nanosci., 8 (2012) 739–743.
  64. M. Samimi, M. Shahriari-Moghadam, Isolation and identification of Delftia lacustris strain-MS3 as a novel and efficient adsorbent for lead biosorption: kinetics and thermodynamic studies, optimization of operating variables, Biochem. Eng. J., 173 (2021) 108091, doi: 10.1016/j.bej.2021.108091.