References
- S. Shoukat, H.N. Bhatti, M. Iqbal, S. Noreen, Mango stone
biocomposite preparation and application for crystal violet
adsorption: a mechanistic study, Microporous Mesoporous
Mater., 239 (2017) 180–189.
- H. Shayesteh, A. Ashrafi, A. Rahbar-Kelishami, Evaluation of
Fe3O4@MnO2 core-shell magnetic nanoparticles as an adsorbent
for decolorization of methylene blue dye in contaminated
water: synthesis and characterization, kinetic, equilibrium, and
thermodynamic studies, J. Mol. Struct., 1149 (2017) 199–205.
- A.H. Jawad, A.S. Abdulhameed, A. Reghioua, Z.M. Yaseen,
Zwitterion composite chitosan-epichlorohydrin/zeolite for
adsorption of methylene blue and reactive red 120 dyes, Int. J.
Biol. Macromol., 163 (2020) 756–765.
- C. Djelloul, A. Hasseine, Ultrasound-assisted removal of
methylene blue from aqueous solution by milk thistle seed,
Desal. Water Treat., 51 (2013) 28–30.
- P. Sharma, S. Pandey, Status of phytoremediation in world
scenario, Int. J. Environ. Biorem. Biodegrad., 2 (2014) 178–191.
- K.T. Chung, Azo dyes and human health: a review, J. Environ.
Sci. Health., Part C Environ. Carcinog. Ecotoxicol. Rev.,
34 (2016) 233–261.
- L. Bianco, E. D’Amico, A. Villone, F. Nanna, D. Barisano,
Bioremediation of wastewater stream from syngas cleaning via
wet scrubbing, Chem. Eng. Trans., 80 (2020) 31–36.
- D. Rajkumar, B.J. Song, J.G. Kim, Electrochemical degradation
of Reactive Blue 19 in chloride medium for the treatment of
textile dyeing wastewater with identification of intermediate
compounds, Dyes Pigm., 72 (2017) 1–7.
- S. Meric, D. Kaptan, T. Olmez, Color and COD removal
from wastewater containing Reactive Black 5 using Fenton’s
oxidation process, Chemosphere, 54 (2004) 435–441.
- J. Joseph, R.C. Radhakrishnan, J.K. Johnson, S.P. Joy, J. Thomas,
Ion-exchange mediated removal of cationic dye-stuffs from
water using ammonium phosphomolybdate, Mater. Chem.
Phys., 242 (2020) 1–8.
- M.H. Dehghani, P. Mahdavi, Removal of acid 4092 dye from
aqueous solution by zinc oxide nanoparticles and ultraviolet
irradiation, Desal. Water Treat., 54 (2015) 3464–3469.
- T. El Malah, H.F. Nour, E.K. Radwan, R.E. Abdel Mageid,
T.A. Khattab, M.A. Olson, A bipyridinium-based polyhydrazone
adsorbent that exhibits ultrahigh adsorption capacity for
the anionic azo dye, Direct Blue 71, Chem. Eng. J., 409 (2021)
128195, doi: 10.1016/j.cej.2020.128195.
- M.M. El Bendary, E.K. Radwan, M.F. El-Shahat, Valorization of
secondary resources into silica-based adsorbents: preparation,
characterization and application in dye removal from
wastewater, Environ. Nanotechnol. Monit. Manage., 15 (2021)
100455, doi: 10.1016/j.enmm.2021.100455.
- A.A. Alqadami, M.A. Khan, M.R. Siddiqui, Z.A. Alothman,
Development of citric anhydride anchored mesoporous MOF
through post synthesis modification to sequester potentially
toxic lead(II) from water, Microporous Mesoporous Mater.,
261 (2018) 198–206.
- R.C. Bansal, M. Goyal, Activated Carbon Adsorption, CRC
Press, Taylor and Francis, London, 2005.
- A.M. Puziy, O.I. Poddubnaya, A. Martínez-Alonso, F. Suárez-García, J.M.D. Tascón, Surface chemistry of phosphoruscontaining
carbons of lignocellulosic origin, Carbon, 43 (2005)
2857–2868.
- A.M. Puziy, O.I. Poddubnaya, A. Martı́nez-Alonso,
F. Suárez-Garcı́a, J.M.D. Tascón, Synthetic carbons activated
with phosphoric acid: I. Surface chemistry and ion binding
properties, Carbon, 40 (2002) 1493–1505.
- E.K. Radwan, S.T. El-Wakeel, T.A. Gad-Allah, Effects of activation
conditions on the structural and adsorption characteristics of
pinecones derived activated carbons, J. Dispersion Sci. Technol.,
40 (2019) 140–151.
- S. Gunes, D. Angin, Kinetic, isotherm, and thermodynamic
studies of Reactive Orange 13 adsorption onto activated carbon
obtained from orange pulp, Desal. Water Treat., 214 (2021)
420–432.
- I. Lupul, J. Yperman, R. Carleer, G. Gryglewicz, Tailoring of
porous texture of hemp stem-based activated carbon produced
by phosphoric acid activation in steam atmosphere, J. Porous
Mater., 22 (2015) 283–289.
- D. Zhang, W. Cheng, J. Ma, R. Li, Influence of activated carbon
in zeolite X/activated carbon composites on CH4/N2 adsorption
separation ability, Adsorption, 22 (2016) 1129–1135.
- L. Khezami, R. Capart, Removal of chromium(VI) from aqueous
solution by activated carbons: kinetic and equilibrium studies,
J. Hazard. Mater. B, 123 (2005) 223–231.
- G.X. Yang, H. Jiang, Amino modification of biochar for
enhanced adsorption of copper ions from synthetic wastewater,
Water Res., 48 (2014) 396–405.
- M. Imamoglu, O. Tekir, Removal of copper(II) and lead(II) ions
from aqueous solutions by adsorption on activated carbon
from a new precursor hazelnut husks, Desalination, 228 (2008)
108–113.
- E. Altıntıg, H. Altundag, O. Ozyıldırım, I. Acar, Production of
activation carbon from rice husk to support Zn2+ ions, Fresenius
Environ. Bull., 24 (2015) 1–7.
- H. Nourmoradi, K.F. Moghadam, A. Jafari, B. Kamarehie,
Removal of acetaminophen and ibuprofen from aqueous
solutions by activated carbon derived from Quercus Brantii
(Oak) acorn as a low-cost biosorbent, J. Environ. Chem. Eng.,
6 (2018) 6807–6815.
- D. Angin, Production and characterization of activated carbon
from sour cherry stones by zinc chloride, Fuel, 115 (2014)
804–811.
- M. Carrier, A.G. Hardie, U. Uras, J. Görgens, J.H. Knoetze,
Production of char from vacuum pyrolysis of South-African
sugar cane bagasse and its characterization as activated carbon
and biochar, J. Anal. Appl. Pyrolysis, 96 (2012) 24–32.
- A. Kumar, H. Gupta, Activated carbon from sawdust for
naphthalene removal from contaminated water, Environ.
Technol. Innovation, 20 (2020) 101080, doi: 10.1016/j.eti.2020.101080.
- E. Flippo, A. Serra, A. Buccolieri, D. Manno, Green synthesis of
silver nanoparticles with sucrose and maltose: morphological
and structural characterization, J. Non-Cryst. Solids, 356 (2010)
344–350.
- M. Ghaedi, A. Ansari, M.H. Habibi, A.R. Asghari, Removal
of malachite green from aqueous solution by zinc oxide
nanoparticle loaded on activated carbon: kinetics and isotherm
study, J. Ind. Eng. Chem., 20 (2014) 17–28.
- A. Bée, D. Talbot, S. Abramson, V. Dupuis, Magnetic alginate
beads for Pb(II) ions removal from wastewater, J. Colloid
Interface Sci., 362 (2011) 486–492.
- K.D. Hristovski, P.K. Westerhoff, T. Möller, P. Sylvester, Effect
of synthesis conditions on nano-iron (hydr)oxide impregnated
granulated activated carbon, Chem. Eng. J., 146 (2009) 237–243.
- X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology
in water and wastewater treatment, Water Res., 47 (2013)
3931–3946.
- P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu,
M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Use of iron oxide
nanomaterials in wastewater treatment: a review, Sci. Total
Environ., 424 (2012) 1–10.
- G. Jing, Z. Zhou, L. Song, M. Dong, Ultrasound enhanced
adsorption and desorption of chromium(VI) on activated
carbon and polymeric resin, Desalination, 279 (2011)
423–427.
- M. Breitbach, D. Bathen, Influence of ultrasound on adsorption
processes, Ultrason. Sonochem., 8 (2001) 277–283.
- P.S. Ardekani, H. Karimi, M. Ghaedi, A. Asfaram, M.K. Purkait,
Ultrasonic assisted removal of methylene blue on ultrasonically
synthesized zinc hydroxide nanoparticles on activated carbon
prepared from wood of cherry tree: experimental design
methodology and artificial neural network, J. Mol. Liq.,
229 (2017) 114–124.
- Z.A. Alothman, A.H. Bahkali, M.A. Khiyami, S.M. Alfadul,
S.M. Wabaidura, M. Alam, B.Z. Alfarhan, Low cost biosorbents
from fungi for heavy metals removal from wastewater, Sep. Sci.
Technol., 55 (2020) 1766–1775.
- H. Deng, G. Li, H. Yang, J. Tang, Preparation of activated
carbons from cotton stalk by microwave assisted KOH and
K2CO3 activation, Chem. Eng. J., 163 (2010) 373–381.
- G. Xiong, U. Pal, J.G. Serrano, K.B. Ucer, R.T. Williams,
Photoluminescence and FTIR study of ZnO nanoparticles: the
impurity and defect perspective, Phys. Status Solidi, 3 (2006)
3577–3581.
- E. Kenawy, A.A. Ghfar, S.M. Wabaidur, M.A. Khan,
M.R. Siddiqui, Z.A. Alothman, A.A. Alqadami, M. Hamid,
Cetyltrimethylammonium bromide intercalated and branched
polyhydroxystyrene functionalized montmorillonite clay to
sequester cationic dyes, J. Environ. Manage., 219 (2018) 285–293.
- T.H. Liou, S.J. Wu, Characteristic of microporous/mesoporous
carbons prepared from rice husk under base and acid treated
conditions, J. Hazard. Mater., 171 (2009) 693–703.
- S. Karnjanakom, P. Maneechakr, Adsorption behaviors and
capacities of Cr(VI) onto environmentally activated carbon
modified by cationic (HDTMA and DDAB) surfactants, J. Mol.
Struct., 1186 (2019) 80–90.
- M. Ghaedi, A.M. Ghaedi, M. Hossainpour, A. Ansari,
M.H. Habibi, A.R. Asghari, Least square-support vector
(LS-SVM) method for modeling of methylene blue dye
adsorption using copper oxide loaded on activated carbon:
kinetic and isotherm study, J. Ind. Eng. Chem., 20 (2014)
1641–1649.
- H.F. Nour, R.E. Abdel Mageid, E.K. Radwan, T.A. Khattab,
M.A. Olson, T. El Malah, Adsorption isotherms and kinetic
studies for the removal of toxic reactive dyestuffs from
contaminated water using a viologen-based covalent polymer,
New J. Chem., 45 (2021) 18983–18993.
- T.I. Shaheen, E.K. Radwan, S.T. El-Wakee, Unary and binary
adsorption of anionic dye and toxic metal from wastewater
using 3-aminopropyltriethoxysilane functionalized porous
cellulose acetate microspheres, Microporous Mesoporous
Mater., 338 (2022) 111996, doi: 10.1016/j.micromeso.2022.111996.
- P.S. Kumar, P.S. Anne Fernando, R.T. Ahmed, R. Srinath,
M. Priyadharshini, A.M. Vignesh, A. Thanjiappan, Effect of
temperature on the adsorption of methylene blue dye onto
sulfuric acid–treated orange peel, Chem. Eng. Commun.,
201 (2014) 1526–1547.
- N. Kaya, Z. Yıldız, S. Ceylan, Preparation and characterisation
of biochar from hazelnut shell and its adsorption properties
for methylene blue dye, J. Polytechnic., 21 (2018) 765–776.
- C.J. Luk, J. Yip, C.M. Yuen, C. Kan, K. Lam, A comprehensive
study on adsorption behaviour of direct, reactive and acid dyes
on crosslinked and non-crosslinked chitosan beads, J. Fiber
Bioeng. Inf., 7 (2014) 35–52.
- Mu. Naushad, A.A. Alqadami, Z.A. AlOthman, I.H. Alsohaimi,
M.S. Algamdi, A.M. Aldawsari, Adsorption kinetics, isotherm
and reusability studies for the removal of cationic dye from
aqueous medium using arginine modified activated carbon,
J. Mol. Liq., 293 (2019) 111442, doi: 10.1016/j.molliq.2019.111442.
- M.A. Tahir, H.N. Bhatti, M.J. Iqbal, Solar Red and Brittle Blue
direct dyes adsorption onto Eucalyptus angophoroides bark:
equilibrium, kinetics and thermodynamic studies, Environ.
Chem. Eng., 4 (2016) 2431–2439.
- E. Altintig, A. Alsancak, H. Karaca, D. Angın, H. Altundag, The
comparison of natural and magnetically modified zeolites as
an adsorbent in methyl violet removal from aqueous solutions,
Chem. Eng. Commun., 209 (2022) 555–569.
- Z.A. Al-Anber, M.A. Al-Anber, M. Matouq, O. Al-Ayed,
N.M. Omari, Defatted Jojoba for the removal of methylene blue
from aqueous solution: thermodynamic and kinetic studies,
Desalination, 276 (2011) 169–174.
- H. Cherifi, B. Fatih, H. Salah, Kinetic studies on the adsorption
of methylene blue onto vegetal fiber activated carbons, Appl.
Surf. Sci., 282 (2013) 52–59.
- H. Wang, P. Zhou, R. Guo, Y. Wang, H. Zhan, Y. Yuan, Synthesis
of rectorite/Fe3O4/ZnO composites and their application for the
removal of methylene blue dye, Catalysts, 8 (2018) 1–18.
- O. Cercel, A. Ozcan, H.F. Gercel, Preparation of activated
carbon from renewable bio-plant of Eupharbia rigida by H2SO4
activation and its adsorption behavior in aqueous solutions,
Appl. Surf. Sci., 253 (2007) 4843–4852.
- R.H. Khuluk, A. Rahmat, Buhani, Suharso, Removal of
methylene blue by adsorption onto activated carbon from
coconut shell (Cocos nucifera L.), Indones. J. Sci. Technol.,
4 (2019) 229–240.
- C. Patawat, K. Silakate, S. Chuan-Udom, N. Supanchaiyamat,
A.J. Hunt, Y. Ngernyen, Preparation of activated carbon from
Dipterocarpus alatus fruit and its application for methylene blue
adsorption, RSC Adv., 10 (2020) 21082–21091.