References

  1. H. Greidanus, M. Alvarez, T. Eriksen, V. Gammieri, Completeness and accuracy of a wide-area maritime situational picture based on automatic ship reporting systems, J. Navig., 69 (2016) 156–168.
  2. J. Lisowski, Analysis of methods of determining the safe ship trajectory, TransNav Int. J. Mar. Navig. Safety Sea Transp., 10 (2016) 223–228.
  3. J.X. Liu, H.H. Li, Z.L. Yang, K.F. Wu, Y. Liu, R.W. Liu, Adaptive Douglas-Peucker algorithm with automatic thresholding for AIS-based vessel trajectory compression, IEEE Access, 7 (2019) 150677–150692.
  4. I. Varlamis, I. Kontopoulos, K. Tserpes, M. Etemad, A. Soares, S. Matwin, Building navigation networks from multi-vessel trajectory data, GeoInformatica, 25 (2021) 69–97.
  5. Y. Liang, H. Zhang, Ship track prediction based on AIS data and PSO optimized LSTM network, Int. Core J. Eng., 6 (2020) 23–33.
  6. L. Huang, Y. Liu, Y.Q. Wen, X.-Q. Geng, T.-D. Sun, Inland waterway sparse AIS trajectory estimation method based on navigation experience, Dalian Haishi Daxue Xuebao/J. Dalian Marit. Univ., 43 (2017) 7–13.
  7. L.F. Sánchez-Heres, Simplification and event identification for AIS trajectories: the equivalent passage plan method, J. Navig., 72 (2019) 307–320.
  8. H. Zhou, Y.J. Chen, S.M. Zhang, Ship trajectory prediction based on BP neural network, J. Artif. Intell., 1 (2019) 29–36.
  9. C. Zhong, Z.L. Jiang, X.M. Chu, L. Liu, Inland ship trajectory restoration by recurrent neural network, J. Navig., 72 (2019) 1359–1377.
  10. C. Liu, J.L. Wang, A.C. Liu, Y.N. Cai, B. Ai, An asynchronous trajectory matching method based on piecewise space-time constraints, IEEE Access, 8 (2020) 224712–224728.
  11. H.Y. Xia, Navigational risk analysis based on GIS spatiotemporal trajectory mining: a case study in Nanjing Yangtze River Bridge waters, Arabian J. Geosci., 14 (2021) 1–15, doi: 10.1007/s12517-021-06621-6.
  12. S.-k. Zhang, G.-y. Shi, Z.-j. Liu, Z.-w. Zhao, Z.-l. Wu, Data-driven based automatic maritime routing from massive AIS trajectories in the face of disparity, Ocean Eng., 155 (2018) 240–250.
  13. J.-C. Huang, C.-Y. Nieh, H.-C. Kuo, Risk assessment of ships maneuvering in an approaching channel based on AIS data, Ocean Eng., 173 (2019) 399–414.
  14. X. Han, C. Tian, Vessel track prediction based on fractional gradient recurrent neural network with maneuvering behavior identification, Sci. Prog., 2021 (2021) 5526082, doi: 10.1155/2021/5526082.
  15. K. Sheng, Z. Liu, D.C. Zhou, A.L. He, C.X. Feng, Research on ship classification based on trajectory features, J. Navig., 71 (2018) 100–116.
  16. L.Y. Zhang, Q. Meng, Z. Xiao, X.J. Fu, A novel ship trajectory reconstruction approach using AIS data, Ocean Eng., 159 (2018a) 165–174.
  17. D. Alizadeh, A.A. Alesheikh, M. Sharif, Vessel trajectory prediction using historical automatic identification system data, J. Navig., 74 (2021) 156–174.
  18. I. Czarnowski, M. Mieczynska, M., Impact of distance measures on the performance of AIS data clustering, Comput. Syst. Sci. Eng., 36 (2020) 69–82.
  19. K. Nagao, A. Seo, T. Hida, Y. Uzaki, Development of navigation support system for small ship using smartphone and AIS, J. Japan Inst. Navig., 135 (2016) 11–18.
  20. P. Silveira, A.P. Teixeira, C.G. Soares, AIS based shipping routes using the Dijkstra algorithm, TransNav. Int. J. Mar. Navig. Safety Sea Transp., 13 (2019) 565–571.
  21. H. Tamaru, R. Shoji, Study on automatic indication on unstable AIS positional information, J. Japan Inst. Navig., 139 (2018) 55–61.
  22. A. Verma, B. Mettler, Computational investigation of environment learning in guidance and navigation, J. Guidance Control Dyn., 40 (2016) 371–389.
  23. A. Lazarowska, A trajectory base method for ship’s safe path planning, Procedia Comput. Sci., 96 (2016) 1022–1031.
  24. K.K. Pandey, D.R. Parhi, Trajectory planning and the target search by the mobile robot in an environment using a behavior-based neural network approach, Robotica, 38 (2020) 1627–1641.