References
- H. Greidanus, M. Alvarez, T. Eriksen, V. Gammieri,
Completeness and accuracy of a wide-area maritime situational
picture based on automatic ship reporting systems, J. Navig.,
69 (2016) 156–168.
- J. Lisowski, Analysis of methods of determining the safe ship
trajectory, TransNav Int. J. Mar. Navig. Safety Sea Transp.,
10 (2016) 223–228.
- J.X. Liu, H.H. Li, Z.L. Yang, K.F. Wu, Y. Liu, R.W. Liu, Adaptive
Douglas-Peucker algorithm with automatic thresholding for
AIS-based vessel trajectory compression, IEEE Access, 7 (2019)
150677–150692.
- I. Varlamis, I. Kontopoulos, K. Tserpes, M. Etemad, A. Soares,
S. Matwin, Building navigation networks from multi-vessel
trajectory data, GeoInformatica, 25 (2021) 69–97.
- Y. Liang, H. Zhang, Ship track prediction based on AIS data and
PSO optimized LSTM network, Int. Core J. Eng., 6 (2020) 23–33.
- L. Huang, Y. Liu, Y.Q. Wen, X.-Q. Geng, T.-D. Sun, Inland
waterway sparse AIS trajectory estimation method based on
navigation experience, Dalian Haishi Daxue Xuebao/J. Dalian
Marit. Univ., 43 (2017) 7–13.
- L.F. Sánchez-Heres, Simplification and event identification for
AIS trajectories: the equivalent passage plan method, J. Navig.,
72 (2019) 307–320.
- H. Zhou, Y.J. Chen, S.M. Zhang, Ship trajectory prediction
based on BP neural network, J. Artif. Intell., 1 (2019) 29–36.
- C. Zhong, Z.L. Jiang, X.M. Chu, L. Liu, Inland ship trajectory
restoration by recurrent neural network, J. Navig., 72 (2019)
1359–1377.
- C. Liu, J.L. Wang, A.C. Liu, Y.N. Cai, B. Ai, An asynchronous
trajectory matching method based on piecewise space-time
constraints, IEEE Access, 8 (2020) 224712–224728.
- H.Y. Xia, Navigational risk analysis based on GIS spatiotemporal
trajectory mining: a case study in Nanjing Yangtze River
Bridge waters, Arabian J. Geosci., 14 (2021) 1–15, doi: 10.1007/s12517-021-06621-6.
- S.-k. Zhang, G.-y. Shi, Z.-j. Liu, Z.-w. Zhao, Z.-l. Wu, Data-driven
based automatic maritime routing from massive AIS trajectories
in the face of disparity, Ocean Eng., 155 (2018) 240–250.
- J.-C. Huang, C.-Y. Nieh, H.-C. Kuo, Risk assessment of ships
maneuvering in an approaching channel based on AIS data,
Ocean Eng., 173 (2019) 399–414.
- X. Han, C. Tian, Vessel track prediction based on fractional
gradient recurrent neural network with maneuvering
behavior identification, Sci. Prog., 2021 (2021) 5526082,
doi: 10.1155/2021/5526082.
- K. Sheng, Z. Liu, D.C. Zhou, A.L. He, C.X. Feng, Research
on ship classification based on trajectory features, J. Navig.,
71 (2018) 100–116.
- L.Y. Zhang, Q. Meng, Z. Xiao, X.J. Fu, A novel ship trajectory
reconstruction approach using AIS data, Ocean Eng.,
159 (2018a) 165–174.
- D. Alizadeh, A.A. Alesheikh, M. Sharif, Vessel trajectory
prediction using historical automatic identification system
data, J. Navig., 74 (2021) 156–174.
- I. Czarnowski, M. Mieczynska, M., Impact of distance measures
on the performance of AIS data clustering, Comput. Syst. Sci.
Eng., 36 (2020) 69–82.
- K. Nagao, A. Seo, T. Hida, Y. Uzaki, Development of navigation
support system for small ship using smartphone and AIS,
J. Japan Inst. Navig., 135 (2016) 11–18.
- P. Silveira, A.P. Teixeira, C.G. Soares, AIS based shipping routes
using the Dijkstra algorithm, TransNav. Int. J. Mar. Navig.
Safety Sea Transp., 13 (2019) 565–571.
- H. Tamaru, R. Shoji, Study on automatic indication on unstable
AIS positional information, J. Japan Inst. Navig., 139 (2018)
55–61.
- A. Verma, B. Mettler, Computational investigation of
environment learning in guidance and navigation, J. Guidance
Control Dyn., 40 (2016) 371–389.
- A. Lazarowska, A trajectory base method for ship’s safe path
planning, Procedia Comput. Sci., 96 (2016) 1022–1031.
- K.K. Pandey, D.R. Parhi, Trajectory planning and the target
search by the mobile robot in an environment using a
behavior-based neural network approach, Robotica, 38 (2020)
1627–1641.