References

  1. A.I. Bondarenko, I.O. Taran, Effect of antilock brake system on basic parameters of transport vehicle transmission, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu – Min. Mech., 2 (2017) 75–80.
  2. D. Savitski, V. Ivanov, B. Shyrokau, T. Pütz, J. De Smet, J. Theunissen, Experimental investigations on continuous regenerative anti-lock braking system of full electric vehicle, Int. J. Automot. Technol., 17 (2016) 327–338.
  3. T. Köppen, T. Küpper, O. Makarenkov, Existence and stability of limit cycles in control of anti-lock braking systems with two boundaries via perturbation theory, Int. J. Control, 90 (2017) 974–989.
  4. R. Verma, D. Ginoya, P.D. Shendge, S.B. Phadke, Slip regulation for anti-lock braking systems using multiple surface sliding controller combined with inertial delay control, Veh. Syst. Dyn., 53 (2015) 1150–1171.
  5. B.H. Sababha, Y.A. Alqudah, A reconfiguration-based faulttolerant anti-lock brake-by-wire system, ACM Trans. Embedded Comput. Syst., 17 (2018) 1–13.
  6. S.L. Perić, D.S. Antić, M.B. Milovanović, D.B. Mitić, M.T. Milojković, S.S. Nikolić, Quasi-sliding mode control with orthogonal endocrine neural network-based estimator applied in anti-lock braking system, IEEE/ASME Trans. Mechatron., 21 (2016) 754–764.
  7. C. Ahn, B. Kim, M. Lee, Modeling and control of an anti-lock brake and steering system for cooperative control on split-mu surfaces, Int. J. Automot. Technol., 13 (2012) 571–581.
  8. K. Han, B. Lee, S.B. Choi, Development of an antilock brake system for electric vehicles without wheel slip and road friction information, IEEE Trans. Veh. Technol., 68 (2019) 5506–5517.
  9. C. Feng, Key technologies of low carbon design integrated system for typical automobile parts, J. Comput. Methods Sci. Eng., 19 (2019) S115–S122.
  10. A.K. Singh, I. Nasiruddin, A.K. Sharma, A. Saxena, Modelling, analysis and control of an eddy current braking system using intelligent controllers, J. Intell. Fuzzy Syst., 36 (2019) 2185–2194.
  11. W. Sun, J. Zhang, Z. Liu, Two-time-scale redesign for antilock braking systems of ground vehicles, IEEE Trans. Ind. Electron., 66 (2018) 4577–4586.
  12. J. Zhang, W. Sun, H. Jing, Nonlinear robust control of antilock braking systems assisted by active suspensions for automobile, IEEE Trans. Control Syst. Technol., 27 (2019) 1352–1359.
  13. M. Corno, F. Roselli, L. Onesto, F. Molinaro, E. Graves, A. Doubek, S.M. Savaresi, Experimental validation of an antilock braking system for snowmobiles with lateral stability considerations, IEEE Trans. Control Syst. Technol., 28 (2018) 705–712.
  14. S.G. Song, X.P. Li, D.P. Margaris, Electric vehicle electrichydraulic regenerative braking strategy based on variable current feedback, J. Mech. Eng. Res. Dev., 39 (2016) 403–412.
  15. A. Patil, D. Ginoya, P.D. Shendge, S.B. Phadke, Uncertaintyestimation- based approach to antilock braking systems, IEEE Trans. Veh. Technol., 65 (2016) 1171–1185.
  16. Y. Chen, J. Li, H. Lu, P. Yan, Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gas-water supply chains, J. Cleaner Prod., 278 (2021) 123209, doi:10.1016/j.jclepro.2020.123209.
  17. F. Guo, S. Wu, J. Liu, Z. Wu, S. Fu, S. Ding, A time-domain stepwise fatigue assessment to bridge small-scale fracture mechanics with large-scale system dynamics for high-speed maglev lightweight bogies, Eng. Fract. Mech., 248 (2021) 107711, doi: 10.1016/j.engfracmech.2021.107711.
  18. O. Makarenkov, Existence and stability of limit cycles in the model of a planar passive biped walking down a slope, Proc. R. Soc. Math. Phys. Eng. Sc., 476 (2020) 62–82.
  19. J.H. Tang, K.Y. Wang, S.Y. Bei, M.M. Sousa, Research on braking force distribution strategy of composite braking system of hybrid electric vehicle, J. Mech. Eng. Res. Dev., 39 (2016) 373–386.
  20. A. Manivanna Boopathi, A. Abudhahir, Adaptive fuzzy sliding mode controller for wheel slip control in antilock braking system, J. Eng. Res., 4 (2016) 18–26.
  21. H. Chen, G. Zhang, D. Fan, L. Fang, L. Huang, Nonlinear Lamb wave analysis for microdefect identification in mechanical structural health assessment, Measurement, 164 (2020) 108026, doi:10.1016/j.measurement.2020.108026.
  22. Y. Wang, L. Cao, P. Hu, B. Li, Y. Li, Model establishment and performance evaluation of a modified regenerative system for a 660 MW supercritical unit running at the IPT-setting mode, Energy, 179 (2019) 890–915.
  23. F. Wang, X.B. Fan, K. Jin, Y.K. Sun, An optimization control of automobile anti-lock braking system based on road condition identification, Comput. Simul., 34 (2017) 155–160.
  24. T.-L. Le, Intelligent fuzzy controller design for antilock braking systems, J. Intell. Fuzzy Syst., 36 (2019) 3303–3315.
  25. S. Yang, X. Wan, K. Wei, W. Ma, Z. Wang, Silicon recovery from diamond wire saw silicon powder waste with hydrochloric acid pretreatment: an investigation of Al dissolution behavior, Waste Manage. (Elmsford), 120 (2021) 820–827.
  26. Y. Zha, G. Liu, F. Ma, R. Guo, Acceleration slip regulation control for four-wheel independently drive electric vehicle based on fuzzy control, J. Comput. Methods Sci. Eng., 20 (2020) 1265–1278.
  27. Y.J. Zheng, Y. Feng, S. Joshi, Construction and study of multi- DOF automobile dynamic model, J. Mech. Eng. Res. Dev., 39 (2016) 187–196.
  28. K. Zhang, M.H. Shalehy, G.T. Ezaz, A. Chakraborty, K. Mushfique Mohib, L. Liu, An integrated flood risk assessment approach based on coupled hydrological-hydraulic modeling and bottom-up hazard vulnerability analysis, Environ. Modell. Software, 148 (2022) 105279, doi: 10.1016/j.envsoft.2021.105279.
  29. C. Zhang, J. Ou, Control structure interaction of electromagnetic mass damper system for structural vibration control, J. Eng. Mech., 134 (2008) 428–437.