References
- A.I. Bondarenko, I.O. Taran, Effect of antilock brake system on
basic parameters of transport vehicle transmission, Naukovyi
Visnyk Natsionalnoho Hirnychoho Universytetu – Min. Mech.,
2 (2017) 75–80.
- D. Savitski, V. Ivanov, B. Shyrokau, T. Pütz, J. De Smet, J. Theunissen,
Experimental investigations on continuous regenerative
anti-lock braking system of full electric vehicle, Int. J. Automot.
Technol., 17 (2016) 327–338.
- T. Köppen, T. Küpper, O. Makarenkov, Existence and stability
of limit cycles in control of anti-lock braking systems with two
boundaries via perturbation theory, Int. J. Control, 90 (2017)
974–989.
- R. Verma, D. Ginoya, P.D. Shendge, S.B. Phadke, Slip regulation
for anti-lock braking systems using multiple surface sliding
controller combined with inertial delay control, Veh. Syst. Dyn.,
53 (2015) 1150–1171.
- B.H. Sababha, Y.A. Alqudah, A reconfiguration-based faulttolerant
anti-lock brake-by-wire system, ACM Trans. Embedded
Comput. Syst., 17 (2018) 1–13.
- S.L. Perić, D.S. Antić, M.B. Milovanović, D.B. Mitić,
M.T. Milojković, S.S. Nikolić, Quasi-sliding mode control with
orthogonal endocrine neural network-based estimator applied
in anti-lock braking system, IEEE/ASME Trans. Mechatron.,
21 (2016) 754–764.
- C. Ahn, B. Kim, M. Lee, Modeling and control of an anti-lock
brake and steering system for cooperative control on split-mu
surfaces, Int. J. Automot. Technol., 13 (2012) 571–581.
- K. Han, B. Lee, S.B. Choi, Development of an antilock brake
system for electric vehicles without wheel slip and road friction
information, IEEE Trans. Veh. Technol., 68 (2019) 5506–5517.
- C. Feng, Key technologies of low carbon design integrated
system for typical automobile parts, J. Comput. Methods Sci.
Eng., 19 (2019) S115–S122.
- A.K. Singh, I. Nasiruddin, A.K. Sharma, A. Saxena, Modelling,
analysis and control of an eddy current braking system using
intelligent controllers, J. Intell. Fuzzy Syst., 36 (2019) 2185–2194.
- W. Sun, J. Zhang, Z. Liu, Two-time-scale redesign for antilock
braking systems of ground vehicles, IEEE Trans. Ind. Electron.,
66 (2018) 4577–4586.
- J. Zhang, W. Sun, H. Jing, Nonlinear robust control of antilock
braking systems assisted by active suspensions for automobile,
IEEE Trans. Control Syst. Technol., 27 (2019) 1352–1359.
- M. Corno, F. Roselli, L. Onesto, F. Molinaro, E. Graves,
A. Doubek, S.M. Savaresi, Experimental validation of an
antilock braking system for snowmobiles with lateral stability
considerations, IEEE Trans. Control Syst. Technol., 28 (2018)
705–712.
- S.G. Song, X.P. Li, D.P. Margaris, Electric vehicle electrichydraulic
regenerative braking strategy based on variable
current feedback, J. Mech. Eng. Res. Dev., 39 (2016) 403–412.
- A. Patil, D. Ginoya, P.D. Shendge, S.B. Phadke, Uncertaintyestimation-
based approach to antilock braking systems, IEEE
Trans. Veh. Technol., 65 (2016) 1171–1185.
- Y. Chen, J. Li, H. Lu, P. Yan, Coupling system dynamics analysis
and risk aversion programming for optimizing the mixed
noise-driven shale gas-water supply chains, J. Cleaner Prod.,
278 (2021) 123209, doi:10.1016/j.jclepro.2020.123209.
- F. Guo, S. Wu, J. Liu, Z. Wu, S. Fu, S. Ding, A time-domain
stepwise fatigue assessment to bridge small-scale fracture
mechanics with large-scale system dynamics for high-speed
maglev lightweight bogies, Eng. Fract. Mech., 248 (2021) 107711,
doi: 10.1016/j.engfracmech.2021.107711.
- O. Makarenkov, Existence and stability of limit cycles in the
model of a planar passive biped walking down a slope, Proc. R.
Soc. Math. Phys. Eng. Sc., 476 (2020) 62–82.
- J.H. Tang, K.Y. Wang, S.Y. Bei, M.M. Sousa, Research on braking
force distribution strategy of composite braking system of
hybrid electric vehicle, J. Mech. Eng. Res. Dev., 39 (2016)
373–386.
- A. Manivanna Boopathi, A. Abudhahir, Adaptive fuzzy sliding
mode controller for wheel slip control in antilock braking
system, J. Eng. Res., 4 (2016) 18–26.
- H. Chen, G. Zhang, D. Fan, L. Fang, L. Huang, Nonlinear Lamb
wave analysis for microdefect identification in mechanical
structural health assessment, Measurement, 164 (2020) 108026,
doi:10.1016/j.measurement.2020.108026.
- Y. Wang, L. Cao, P. Hu, B. Li, Y. Li, Model establishment and
performance evaluation of a modified regenerative system for
a 660 MW supercritical unit running at the IPT-setting mode,
Energy, 179 (2019) 890–915.
- F. Wang, X.B. Fan, K. Jin, Y.K. Sun, An optimization control of
automobile anti-lock braking system based on road condition
identification, Comput. Simul., 34 (2017) 155–160.
- T.-L. Le, Intelligent fuzzy controller design for antilock braking
systems, J. Intell. Fuzzy Syst., 36 (2019) 3303–3315.
- S. Yang, X. Wan, K. Wei, W. Ma, Z. Wang, Silicon recovery from
diamond wire saw silicon powder waste with hydrochloric acid
pretreatment: an investigation of Al dissolution behavior, Waste
Manage. (Elmsford), 120 (2021) 820–827.
- Y. Zha, G. Liu, F. Ma, R. Guo, Acceleration slip regulation
control for four-wheel independently drive electric vehicle
based on fuzzy control, J. Comput. Methods Sci. Eng., 20 (2020)
1265–1278.
- Y.J. Zheng, Y. Feng, S. Joshi, Construction and study of multi-
DOF automobile dynamic model, J. Mech. Eng. Res. Dev.,
39 (2016) 187–196.
- K. Zhang, M.H. Shalehy, G.T. Ezaz, A. Chakraborty, K. Mushfique
Mohib, L. Liu, An integrated flood risk assessment approach
based on coupled hydrological-hydraulic modeling and
bottom-up hazard vulnerability analysis, Environ. Modell.
Software, 148 (2022) 105279, doi: 10.1016/j.envsoft.2021.105279.
- C. Zhang, J. Ou, Control structure interaction of electromagnetic
mass damper system for structural vibration control, J. Eng.
Mech., 134 (2008) 428–437.