References

  1. D. Hasson, M. Avriel, W. Resnick, T. Rozenman, S. Windreich, Calcium carbonate scale deposition on heat transfer surfaces, Desalination, 5 (1968) 107–119.
  2. Z.P. Zhu, Prediction of the CaCO3 minimum solubility in water treatment, Technol. Water Treat., 18 (1992) 343–348.
  3. Z.H. Liu, The DBL model and prediction of calcite dissolution/precipitation rates, Carsologica Sin., 17 (1998) 1–6.
  4. B. Wang, C.J. Li, W. Zhu, Q.L. Xu, Y. Liu, Application of de-fouling technology in pipelines, Corros. Prot. Petrochem. Ind., 25 (2008) 28–30.
  5. A.H. Deng, H.M. Huang, W.J. Ji, Effects of magnetic field on the precipitation of CaCO3, Ind. Water Treat., 10 (2012) 27–30.
  6. W.K. Zhu, X.G. Luo, P. He, et al., Effects of lignin on crystallization of calcium carbonate, Chem. Ind. For. Prod., 6 (2010) 7–12.
  7. M. Luo, Z. Lu, Study of the dynamics of formation of CaCO3 crystal, Fine Chem., 8 (2000) 463–466.
  8. T. Larsen, P. Randhol, M. Lioliou, L.O. Jøsang, T. Østvold, Kinetics of CaCO3 Scale Formation During Core Flooding, Paper presented at the SPE International Oilfield Scale Conference, Paper Number: SPE-114045-MS, Aberdeen, UK, May 2008.
  9. A. Taheri, M. Zahedzadeh, R. Masoudi, F. Alikhani, E. Roayaei, M. Ghanavati, Evaluation of Reservoir Performance Under Water Injection Considering the Effect of Inorganic Scale Deposition in an Iranian Carbonate Oil Reservoir, Paper presented at the 8th European Formation Damage Conference, Paper Number: SPE-121221-MS, Scheveningen, The Netherlands, May 2009.
  10. T.V. Charpentier, A. Neville, S. Baraka-Lokmane, C. Hurtevent, J.-R. Ordonez-Varela, F. Møller Nielsen, V. Eroini, J.H. Olsen, J.A. Ellingsen, Ø. Bache, Evaluation of Anti-fouling Surfaces for Prevention of Mineral Scaling in Sub-surface Safety Valves, Paper presented at the SPE International Oilfield Scale Conference and Exhibition, Paper Number: SPE-169750-MS, Aberdeen, Scotland, May 2014.
  11. D.F. Wang, L.B. Huang, M.M. Wei, T.T. Wang, Y.X. Tian, MD simulation of influence of high voltage static electric field on crystallization of calcium carbonate, Ind. Water Wastewater, 40 (2010) 76–79.
  12. M.K. Story, Surface Temperature Effects on the Fouling Characteristics of Cooling Water, Master Dissertation, Oregon State University, Oregon, The United States, 1974.
  13. H.J. Meyer, The influence of impurities on the growth rate of calcite, J. Cryst. Growth, 66 (1984) 639–646.
  14. Y. Tang, F. Zhang, Z. Cao, W. Jing, Y. Chen, Crystallization of CaCO3 in the presence of sulfate and additives: experimental and molecular dynamics simulation studies, J. Colloid Interface Sci., 377 (2012) 430–437.
  15. M. Bohnet, W. Augustin, Effect of Surface Structure and pH-Value on Fouling Behaviour of Heat Exchangers, International Symposium on Transport Phenomena in Thermal Engineering, 1993, pp. 295–300.
  16. A. Katsifaras, N. Spanos, Effect of inorganic phosphate ions on the spontaneous precipitation of vaterite and on the transformation of vaterite to calcite, J. Cryst. Growth, 204 (1999) 183–190.
  17. Y. Ben Amor, L. Bousselmi, B. Tribollet, E. Triki, Study of the effect of magnesium concentration on the deposit of allotropic forms of calcium carbonate and related carbon steel interface behavior, Electrochim. Acta, 55 (2010) 4820–4826.
  18. C.Y. Tai, M.C. Chang, S.W. Yeh, Synergetic effects of temperature and magnetic field on the aragonite and calcite growth, Chem. Eng. Sci., 66 (2011) 1246–1253.
  19. N. Sánchez-Pastor, A.M. Gigler, J.A. Cruz, S.-H. Park, G. Jordan, L. Fernández-Díaz, Growth of calcium carbonate in the presence of Cr(VI), Cryst. Growth Des., 11 (2011) 3081–3089.
  20. S.J. Jiang, H.G. Yu, C.Y. Liu, Research on the scaling dynamic model of the high salinity system, Appl. Chem. Ind., 40 (2011) 1623–1628.
  21. J. Xu, W. Lan, C. Ren, X.G. Zhou, S. Wang, J. Yuan, Modeling of coupled transfer of water, heat and solute in saline loess considering sodium sulfate crystallization, Cold Reg. Sci. Technol., 189 (2021) 103335, doi:10.1016/j.coldregions.2021.103335.
  22. H. Lu, P. Tian, L. He, Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide hotspots driven by socio-economic, geo-hydrologic and climatic conditions, Renewable Sustainable Energy Rev., 112 (2019) 788–796.
  23. L. He, Y. Chen, J. Li, A three-level framework for balancing the tradeoffs among the energy, water, and
    air-emission implications within the life-cycle shale gas supply chains, Resour. Conserv. Recycl., 133 (2018) 206–228.
  24. X. Li, Z.-Q. Dong, P. Yu, L.-P. Wang, X.-D. Niu, H. Yamaguchi, D.-C. Li, Effect of self-assembly on fluorescence in magnetic multiphase flows and its application on the novel detection for COVID-19, Phys. Fluids, 33 (2021) 042004, doi: 10.1063/5.0048123.
  25. Y.-L. Zou, C. He, H. Cong, Z. Zhang, B. Wang, Analysis of water seepage characteristics and formation mechanisms in seasonal water-rich tunnels in a karst area of Chongqing, Mod. Tunnelling Technol., 51 (2014) 18–27, 45.
  26. C.W. Shi, Z. Wu, F. Yang, Y. Tang, Janus particles with pH switchable properties for high-efficiency adsorption of PPCPs in water, Solid State Sci., 119 (2021) 106702, doi: 10.1016/j.solidstatesciences.2021.106702.
  27. F. Fan, C. Qi, J. Tang, Q. Liu, Thermal and exergy efficiency of magnetohydrodynamic Fe3O4-H2O nanofluids flowing through a built-in twisted turbulator corrugated tube under magnetic field, Asia-Pac. J. Chem. Eng. Sci., 15 (2020) e2500, doi: 10.1002/apj.2500.