References

  1. WHO, Progress on Drinking Water, Sanitation and Hygiene: Update and SDG Baselines, World Health Organization, Switzerland, 2017, pp. 1–57.
  2. P. Weerasekara, The United Nations World Water Development Report Wastewater, Future of Food, Journal on Food, Agriculture and Society, France, 2017, pp. 80–81.
  3. M.B. Mohamed, Low Cost Nanomaterials for Water Desalination and Purification, Final Technical Report, United Nations UNSCO, Cairo, 2011.
  4. A.J.N. Khalifa, M.H. Ahmad, Effect of insulation thickness on the productivity of basin type solar stills: an experimental verification under local climate, Energy Convers. Manage., 50 (2009) 2457–2461.
  5. A.A. Al-Karaghouli, W.E. Alnaser, Experimental comparative study of the performances of single and double basin solarstills, Appl. Energy, 77 (2004) 317–325.
  6. A. Muthu Manokar, Y. Taamneh, A. Elnaby Kabeel, D.P. Winston, P. Vijayabalan, D. Balaji, R. Sathyamurthy,
    S. Padmanaba Sundar, D. Mageshbabu, Effect of water depth and insulation on the productivity of an acrylic pyramid solar still–an experimental study, Groundwater Sustainable Dev., 10 (2020) 100–319.
  7. V. Velmurugan, M. Gopalakrishnan, R. Raghu, K. Srithar, Single basin solar still with fin for enhancing productivity, Energy Convers. Manage., 49 (2008) 2602–2608.
  8. A.A. El-Sebaii, M.R.I. Ramadan, S. Aboul-Enein, M. El-Naggar, Effect of fin configuration parameters on single basin solar still performance, Desalination, 365 (2015) 15–24.
  9. F.A. Essa, F.S. Abou-Taleb, R.D. Mohamed, Experimental investigation of vertical solar still with rotating discs, Energy Sources Part A, (2021) 1–21, doi: 10.1080/15567036.2021.1950238.
  10. A. Nisrin, Y. Taamneh, Enhancement of pyramid solar still productivity using absorber plates made of carbon fiber/CNTmodified epoxy composites, Desalination, 419 (2017) 117–124.
  11. A. Ghoneyem, A. Ileri, Software to analyze solar stills and an experimental study on the effects of the cover, Desalination, 114 (1997) 37–44.
  12. O.O. Badran, M.M. Abu-Khader, Evaluating thermal performance of a single slope solar still, Heat Mass Transfer, 43 (2007) 985–995.
  13. E.A. Almuhanna, Evaluation of single slop solar still integrated with evaporative cooling system for brackish water desalination, J. Agric. Sci., 6 (2014) 48, doi: 10.5539/jas.v6n1p48.
  14. B.B. Sahoo, N. Sahoo, P. Mahanta, L. Borbora, P. Kalita, U.K. Saha, Performance assessment of a solar still using blackened surface and thermocol insulation, Renewable Energy, 33 (2008) 1703–1708.
  15. S. Suneja, G.N. Tiwari, Effect of water depth on the performance of an inverted absorber double basin solar still, Energy Convers. Manage., 40 (1999) 1885–1897.
  16. M.R. Rajamanickam, A. Ragupathy, Influence of water depth on internal heat and mass transfer in a double slope solar still, Energy Procedia, 14 (2012) 1701–1708.
  17. M. Abd Elaziz, F.A. Essa, A.H. Elsheikh, Utilization of ensemble random vector functional link network for freshwater prediction of active solar stills with nanoparticles, Sustainable Energy Technol. Assess., 47 (2021) 101–405.
  18. A.A. El-Sebaii, Effect of wind speed on some designs of solar stills, Energy Convers. Manage., 41 (2000) 523–538.
  19. A. Rahmani, A. Boutriaa, Numerical and experimental study of a passive solar still integrated with an external condenser, Int. J. Hydrogen Energy, 42 (2017) 29047–29055.
  20. A.A. El-Sebaii, Effect of wind speed on active and passive solar stills, Energy Convers. Manage., 45 (2004) 1187–1204.
  21. F.A. Essa, Z.M. Omara, A.S. Abdullah, A.E. Kabeel, G.B. Abdelaziz, Enhancing the solar still performance via rotating wick belt and quantum dots nanofluid, Case Stud. Therm. Eng., 27 (2021) 101–222.
  22. A.O. Edeoja, F. Unom, J.A. Edeoja, Investigation of the effect of cover thickness on the yield of a single basin solar still under Makurdi climate, Int. J. Eng. Sci. Invention, 14 (2015) 131–138.
  23. H.N. Panchal, P.K. Shah, Effect of varying glass cover thickness on performance of solar still: in a winter climate conditions, Int. J. Renewable Energy Res., 1 (2012) 212–223.
  24. M.O. Abu Abbas, M.Y. Al-Abed Allah, Effect of condenser materials type and condenser slope on the performance of solar still, Int. J. Trend Res. Dev. (IJTRD), 7 (2020) 2394–9333.
  25. D.C. Montgomery, Design and Analysis of Experiments, Donnelly, 1984, pp. 10–15.
  26. K.M. Bataineh, M. Abu Abbas, Improving the performance of solar still by using nanofluids, vacuuming, and optimal basin water thickness, Desal. Water Treat., 173 (2020) 105–116.
  27. A. Agrawal, R.S. Rana, P.K. Srivastava, Heat transfer coefficients and productivity of a single slope single basin solar still in Indian climatic condition: experimental and theoretical comparison, Resour.-Effic. Technol., 3 (2017) 466–482.
  28. V. Velmurugan, K. Srithar, Performance analysis of solar stills based on various factors affecting the productivity—a review, Renewable Sustainable Energy Rev., 15 (2011) 1294–1304.
  29. A.Z. Al-Garni, Enhancing the solar still using immersion type water heater productivity and the effect of external cooling fan in winter, Appl. Solar Energy, 48 (2012) 193–200.