References
- United Nations, Human Development Report 2015: Work for
Human Development, (2015). Available at: http://hdr.undp.
org/sites/default/files/HDR2015_EN_Overview_Web.pdf
- B.K. Thakur, V. Gupta, P. Bhattacharya, M. Jakariya,
M. Tahmidul Islam, Arsenic in drinking water sources in the
Middle Gangetic Plains in Bihar: an assessment of the depth
of wells to ensure safe water supply, Groundwater Sustainable
Dev., 12 (2020) 100504, doi: 10.1016/j.gsd.2020.100504.
- P. Bhattacharya, J. Bundschuh, Groundwater for sustainable
development – cross cutting the UN sustainable developmental
goals – editorial, Groundwater Sustainable Dev., 1 (2015)
155–157.
- Ministry of Water Resources, Groundwater Quality in Shallow
Aquifers in India, Central Groundwater Board, Government of
India Faridabad, 2018.
- S.O. Adio, M.H. Omar, M. Asif, T.A. Saleh, Arsenic and selenium
removal from water using biosynthesized nanoscale zerovalent
iron: a factorial design analysis, Process Saf. Environ.
Prot., 107 (2017) 518–527.
- A.A. Alswat, M.B. Ahmad, T.A. Saleh, Zeolite modified with
copper oxide and iron oxide for lead and arsenic adsorption
from aqueous solutions, J. Water Supply Res. Technol. AQUA,
65 (2016) 465–479.
- A.H. Smith, E.O. Lingas, M. Rahman, Contamination of
drinking-water by arsenic in Bangladesh: a public health
emergency, Bull. World Health Organ., 78 (2000) 1093–1103.
- F.M. Yunus, S. Khan, F. Khanam, A. Das, M. Rahman,
Summarizing the recommendation of arsenic research during
Millennium Development Goals (MDGs) era in Bangladeshfuture
directions for the Sustainable Development Goals
(SDGs), Groundwater Sustainable Dev., 9 (2019) 100265,
doi:10.1016/j.gsd.2019.100265.
- S.M. Imamul Huq, J.C. Joardar, S. Parvin, R. Correll, R. Naidu,
Arsenic contamination in food-chain: transfer of arsenic into
food materials through groundwater irrigation, J. Health Popul.
Nutr., 24 (2006) 305–316.
- N.I. Khan, D. Bruce, R. Naidu, G. Owens, Implementation of
food frequency questionnaire for the assessment of total dietary
arsenic intake in Bangladesh: Part B, preliminary findings,
Environ. Geochem. Health, 31 (2009) 221–238.
- J. Podgorski, M. Berg, Global threat of arsenic in groundwater,
Science, 368 (2020) 845–850.
- WHO, Guidelines for Drinking-Water Quality: Health Criteria
and Other Supporting Information, World Health Organization,
Geneva, 1996.
- A. van Geen, M. Trevisani, J. Immel, Md. Jakariya, N. Osman,
Z. Cheng, A. Gelman, K.M. Ahmed, Targeting
low-arsenic
groundwater with mobile-phone technology in Araihazar,
Bangladesh, J. Health Popul. Nutr., 24 (2006) 282–297.
- M. Kermani, H. Izanloo, R.R. Kalantary, H.S. Barzaki,
B. Kakavandi, Study of the performances of low-cost adsorbents
extracted from Rosa damascena in aqueous solutions
decolorization, Desal. Water Treat., 80 (2017) 357–369.
- M. Massoudinejad, A. Asadi, M. Vosoughi, M. Gholami,
B. Kakavandi, M.A. Karami, A comprehensive study (kinetic,
thermodynamic and equilibrium) of arsenic(V) adsorption
using KMnO4 modified clinoptilolite, Korean J. Chem. Eng.,
32 (2015) 2078–2086.
- R. Kumar, J. Chawla, Removal of cadmium ion from water/wastewater by nano-metal oxide: a review, Water Qual.
Exposure Health, 5 (2014) 215–226.
- O.A. Bin-Dahman, T.A. Saleh, Synthesis of polyamide grafted
on biosupport as polymeric adsorbents for the removal of dye
and metal ions, Biomass Convers. Biorefin., (2022), doi: 10.1007/s13399-022-02382-8.
- T.A. Saleh, M. Mustaqeem, M. Khaled, Water treatment
technologies in removing heavy metal ions from wastewater:
a review, Environ. Nanotechnol. Monit. Manage., 17 (2022)
100617, doi:10.1016/j.enmm.2021.100617.
- T.A. Saleh, A. Sarı, M. Tuzen, Simultaneous removal of
polyaromatic hydrocarbons from water using polymer
modified carbon, Biomass Convers. Biorefin., (2022),
doi: 10.1007/s13399-021-02163-9.
- T.A. Saleh, Protocols for synthesis of nanomaterials, polymers,
and green materials as adsorbents for water treatment
technologies, Environ. Technol. Innovation, 24 (2021) 101821,
doi: 10.1016/j.eti.2021.101821.
- T.A. Saleh, Experimental and analytical methods for testing
inhibitors and fluids in water-based drilling environments,
TrAC, Trends Anal. Chem., 149 (2022) 116543, doi: 10.1016/j.
trac.2022.116543.
- S. Saini, R. Kumar, J. Chawla, I. Kaur, Punica granatum
(pomegranate) carpellary membrane and its modified form
used as adsorbent for removal of cadmium(II) ions from
aqueous solution, J. Water Supply Res. Technol. AQUA,
67 (2018) 68–83.
- S. Elnawasany, Chapter 7 – Clinical Applications of
Pomegranate, J.R. Soneji, M. Nageswara-Rao, Eds., Breeding
and Health Benefits of Fruit and Nut Crops, InTechOpen, 2018.
- P. Kandylis, E. Kokkinomagoulos, Food applications and
potential health benefits of pomegranate and its derivatives,
Foods, 9 (2020) 122, doi: 10.3390/foods9020122.
- M.S. Mohammad, H.H. Kashani, Chemical composition of the
plant Punica granatum L. (pomegranate) and its effect on heart
and cancer, J. Med. Plant Res., 6 (2012) 5306–5310.
- T.A. Saleh, Isotherm, kinetic, and thermodynamic studies on
Hg(II) adsorption from aqueous solution by silica-multiwall
carbon nanotubes, Environ. Sci. Pollut. Res., 22 (2015)
16721–16731.
- T.A. Saleh, The influence of treatment temperature on the
acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4, Appl. Surf. Sci., 257 (2011) 7746–7751.
- V.C. Srivastava, I.D. Mall, I.M. Mishra, Characterization of
mesoporous rice husk ash (RHA) and adsorption kinetics of
metal ions from aqueous solution onto RHA, J. Hazard. Mater.,
134 (2006) 257–267.
- R. Kumar, J. Chawla, I. Kaur, Removal of cadmium metal from
water by carbon-based nanosorbents: a review, J. Water Health,
13 (2015) 18–33.
- S. Saini, R. Kumar, J. Chawla, I. Kaur, Adsorption of bivalent
lead ions from an aqueous phase system: equilibrium,
thermodynamic, kinetics, and optimization studies, Water
Environ. Res., 91 (2019) 1692–1704.
- Y.S. Ho, G. Mckay, The kinetics of sorption of divalent metal
ions onto sphagnum moss peat, Water Res., 34 (2000) 735–742.
- E. Demirbaş, M. Kobya, S. Öncel, S. Şencan, Removal of Ni(II)
from aqueous solution by adsorption onto hazelnut shell
activated carbon: equilibrium studies, Bioresour. Technol.,
84 (2002) 291–293.
- J. Chawla, R. Kumar, I. Kaur, Carbon nanotubes and graphenes
as adsorbents for adsorption of lead ions from water: a review,
J. Water Supply Res. Technol. AQUA, 64 (2015) 641–659.
- E. Ahmadi, B. Kakavandi, A. Azari, H. Izanloo, H. Gharibi,
A.H. Mahvi, A. Javid, S.Y. Hashemi, The performance of
mesoporous magnetite zeolite nanocomposite in removing
dimethyl phthalate from aquatic environments, Desal. Water
Treat., 57 (2016) 27768–27782.
- J. Salimi, B. Kakavandi, A.A. Babaei, A. Takdastan, N. Alavi,
A. Neisi, B. Ayoubi-Feiz, Modeling and optimization of
nonylphenol removal from contaminated water media using a
magnetic recoverable composite by artificial neural networks,
Water Sci. Technol., 75 (2017) 1761–1775.
- D. Mohan, C.U. Pittman Jr., Arsenic removal from water/wastewater using adsorbents—a critical review, J. Hazard.
Mater., 142 (2007) 1–53.
- M.B. Shakoor, N.K. Niazi, I. Bibi, G. Murtaza, A. Kunhikrishnan,
B. Seshadri, M. Shahid, S. Ali, N.S. Bolan, Y.S. Ok, M. Abid,
F. Ali, Remediation of arsenic-contaminated water using
agricultural wastes as biosorbents, Crit. Rev. Env. Sci. Technol.,
46 (2016) 467–499.
- M.B. Shakoor, N.K. Niazi, I. Bibi, M. Shahid, Z.A. Saqib,
M.F. Nawaz, S.M. Shaheen, H. Wang, D.C.W. Tsang,
J. Bundschuh, Y.S. Ok, J. Rinklebe, Exploring the arsenic
removal potential of various biosorbents from water,
Environ. Int., 123 (2019) 567–579.