References

  1. L. Joseph, B.M. Jun, J.R.V. Flora, C.M. Park, Y. Yoon, Removal of heavy metals from water sources in the developing world using low-cost materials: a review, Chemosphere, 229 (2019) 142–159.
  2. Y. Zhu, W. Fan, T. Zhou, X. Li, Removal of chelated heavy metals from aqueous solution: a review of current methods and mechanisms, Sci. Total Environ., 678 (2019) 253–266.
  3. D.G. Trikkaliotis, A.K. Christoforidis, A.C. Mitropoulos, G.Z. Kyzas, Adsorption of copper ions onto chitosan/ poly(vinyl alcohol) beads functionalized with poly(ethylene glycol), Carbohydr. Polym., 234 (2020) 115890, doi: 10.1016/j.carbpol.2020.115890.
  4. M. Arbabi, N. Golshani, Removal of copper ions Cu(II) from industrial wastewater: a review of removal methods, Int. J. Epidemiol. Res., 3 (2016) 283–293.
  5. Z. Xiao, L. Zhang, L. Wu, D. Chen, Adsorptive removal of Cu(II) from aqueous solutions using a novel macroporous bead adsorbent based on poly(vinyl alcohol)/sodium alginate/KMnO4 modified biochar, J. Taiwan Inst. Chem. Eng., 102 (2019) 110–117.
  6. R.V. Hemavathy, P.S. Kumar, K. Kanmani, N. Jahnavi, Adsorptive separation of Cu(II) ions from aqueous medium using thermally/chemically treated Cassia fistula based biochar, J. Cleaner Prod., 249 (2020) 119390, doi: 10.1016/j.jclepro.2019.119390.
  7. M. Zhang, Adsorption study of Pb(II), Cu(II) and Zn(II) from simulated acid mine drainage using dairy manure compost, Chem. Eng. J., 172 (2011) 361–368.
  8. B. Singha, S.K. Das, Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes, Colloids Surf., B, 107 (2013) 97–106.
  9. P.V. Viotti, W.M. Moreira, O.A.A. dos Santos, R. Bergamasco, A.M.S. Vieira, M.F. Vieira, Diclofenac removal from water by adsorption on Moringa oleifera pods and activated carbon: mechanism, kinetic and equilibrium study, J. Cleaner Prod., 219 (2019) 809–817.
  10. T. Lopes, A. Carvalho, M. Gurgel, A. Vieira, M. Luis, M. Gurgel, Biosorption study of copper and zinc by particles produced from silk sericin–alginate blend: evaluation of blend proportion and thermal cross-linking process in particles production, J. Cleaner Prod., 137 (2016) 1470–1478.
  11. T. Anitha, P.S. Kumar, K.S. Kumar, K. Sriram, J.F. Ahmed, Biosorption of lead(II) ions onto nano-sized chitosan particle blended polyvinyl alcohol (PVA): adsorption isotherms, kinetics and equilibrium studies, Desal. Water Treat., 57 (2016) 13711–13721.
  12. G. Crini, E. Lichtfouse, L.D. Wilson, N. Morin, Conventional and non‑conventional adsorbents for wastewater treatment, Environ. Chem. Lett., 17 (2019) 195–213.
  13. P. Phuengphai, T. Singjanusong, N. Kheangkhun, Removal of copper(II) from aqueous solution using chemically modified fruit peels as efficient low-cost biosorbents, Water Sci. Eng., 14 (2021) 286–294.
  14. J.M.C. Menezes, A.M. da S. Bento, F.J. de Paula Filho, J.G.M. da Costa, H.D.M. Coutinho, R.N.P. Teixeira, Kinetic and thermodynamic study of copper(II) IONS biosorption by Caryocar Coriaceum Wittm bark, Sustainable Chem. Pharm., 19 (2021) 100364, doi: 10.1016/j.scp.2020.100364.
  15. S. Aachhera, S. Tiwari, S. Singh, N. Nagar, H. Garg, C.S Gahan, A study on the biosorption kinetics of Cu(II) and Zn(II) ions from aqueous phase (sulphate medium) using waste sawdust generated from Acacia nilotica wood carpentry, Ecotoxicology, 31 (2022) 615–625.
  16. M.D. Yahya, H. Abubakar, K.S. Obayomi, Y.A. Iyaka, B. Suleiman, Simultaneous and continuous biosorption of Cr and Cu(II) ions from industrial tannery effluent using almond shell in a fixed bed column, Results Eng., 6 (2020) 100113, doi: 10.1016/j.rineng.2020.100113.
  17. J. Nastaj, M. Tuliglowicz, K. Witkiewicz, Equilibrium modeling of mono and binary sorption of Cu(II) and Zn(II) onto chitosan gel beads, Chem. Process Eng., 37 (2016) 485–501.
  18. H. Nh, K. Akli, R. Youfa, M.I. Senjawati, M. Khairati, Biosorption of Cu(II) metal ions in fixed column by using coconut husk waste, Orient. J. Chem., 34 (2018) 2192–2196.
  19. M. Gupta, H. Gupta, D.S. Kharat, Adsorption of Cu(II) by low cost adsorbents and the cost analysis, Environ. Technol. Innovation, 10 (2018) 91–101.
  20. G.G. Dusi, G.S. Marques, M.L. Kienteca, M.L. Gimenes, M.L.M.N. Cerutti, V.R. da Silva, Biosorption investigation of Cu(II) ions from aqueous solutions using sericin–alginate particles: kinetic, equilibrium, and thermodynamic, Sustainable Chem. Pharm., 25 (2022) 100601, doi: 10.1016/j.scp.2022. 100601.
  21. M.L. Gimenes, V.R. Silva, F. Hamerski, M. Ribani, A.P. Scheer, Biosorption of copper(II) onto sericin powder derived from cocoons of the silkworm Bombyx mori: kinetics, equilibrium and thermodynamics studies, Chem. Eng. Trans., 49 (2016) 205–210.
  22. V.R. Silva, F. Hamerski, T.A. Weschenfelder, M. Ribani, M.L. Gimenes, A.P. Scheer, Equilibrium, kinetic, and thermodynamic studies on the biosorption of Bordeaux S dye by sericin powder derived from cocoons of the silkworm Bombyx mori, Desal. Water Treat., 57 (2016) 5119–5129.
  23. J.R. de Andrade, M.G.C. da Silva, M.L. Gimenes, M.G.A. Vieira, Bioadsorption of trivalent and hexavalent chromium from aqueous solutions by sericin-alginate particles produced from Bombyx mori cocoons, Environ. Sci. Pollut. Res., 25 (2018) 25967–25982.
  24. P. Vaithanomsat, V. Kitpreechavanich, Sericin separation from silk degumming wastewater, Sep. Purif. Technol., 59 (2008) 129–133.
  25. W. Tao, M. Li, R. Xie, Preparation and structure of porous silk sericin materials, Macromol. Mater. Eng., 290 (2005) 188–194.
  26. J.R. De Andrade, M.G.C. Da Silva, M.L. Gimenes, M.G.A. Vieira, Equilibrium and thermodynamic studies on adsorption of trivalent chromium by sericin-alginate particles prepared from Bombyx mori cocoons, Chem. Eng. Trans., 52 (2016) 169–174.
  27. K.Y. Cho, J.Y. Moon, Y.W. Lee, K.G. Lee, J.H. Yeo, H.Y. Kweon, K.H. Kim, C.S. Cho, Preparation of self-assembled silk sericin nanoparticles, Int. J. Biol. Macromol., 32 (2003) 36–42.
  28. V.R. Silva, M. Ribani, M.L. Gimenes, A.P. Scheer, High molecular weight sericin obtained by high temperature and ultrafiltration process, Procedia Eng., 42 (2012) 833–841.
  29. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
  30. B.H. Hameed, I.A.W. Tan, A.L. Ahmad, Adsorption isotherm, kinetic modeling and mechanism
    of 2,4,6-trichlorophenol on coconut husk-based activated carbon, Chem. Eng. J., 144 (2008) 235–244.
  31. Z. Marczenko, M. Balcerzak, Chapter 19 – Copper, Z. Marczenko, M. Balcerzak, Eds., Analytical Spectroscopy Library, Vol. 10, Elsevier, 2000, pp. 177–188. Available at: https://doi.org/10.1016/ S0926-4345(00)80083-8
  32. E. Lambdin, W. V Taylor, Determination of trace copper in petroleum middle distillates with cuprizone, Anal. Chem., 40 (1968) 2196–2197.
  33. H. Qiu, L. Lv, B.C. Pan, Q.J. Zhang, W.M. Zhang, Q.X. Zhang, Critical review in adsorption kinetic models, J. Zhejiang Univ. Sci. A, 10 (2009) 716–724.
  34. A.A. Khan, R.P. Singh, Adsorption thermodynamics of carbofuran on Sn(IV) arsenosilicate in H+, Na+ and Ca2+ forms, Colloids Surf., 24 (1987) 33–42.
  35. C.J. Park, J. Ryoo, C.S. Ki, J.W. Kim, I.S. Kim, D.G. Bae, I.C. Um, Effect of molecular weight on the structure and mechanical properties of silk sericin gel, film, and sponge, Int. J. Biol. Macromol., 119 (2018) 821–832.
  36. X. Chen, K.F. Lam, S.F. Mak, K.L. Yeung, Precious metal recovery by selective adsorption using biosorbents, J. Hazard. Mater., 186 (2011) 902–910.
  37. H. Teramoto, M. Miyazawa, Molecular orientation behavior of silk sericin film as revealed by ATR infrared spectroscopy, Biomacromolecules, 6 (2005) 2049–2057.
  38. M.A. Adebayo, L.D.T. Prola, E.C. Lima, M.J. Puchana-Rosero, R. Cataluña, C. Saucier, C.S. Umpierres,
    J.C.P. Vaghetti, L.G. da Silva, R. Ruggiero, Adsorption of Procion Blue MX-R dye from aqueous solutions by lignin chemically modified with aluminium and manganese, J. Hazard. Mater., 268 (2014) 43–50.
  39. N.T. das G. Santos, L.F. Moraes, M.G.C. da Silva, M.G.A. Vieira, Recovery of gold through adsorption onto sericin and alginate particles chemically cross-linked by proanthocyanidins, J. Cleaner Prod., 253 (2020) 119925, doi:10.1016/j.jclepro.2019.119925.
  40. C.H. Weng, Y.T. Lin, D.Y. Hong, Y.C. Sharma, S.C. Chen, K. Tripathi, Effective removal of copper ions from aqueous solution using base treated black tea waste, Ecol. Eng., 67 (2014) 127–133.
  41. A. Witek-Krowiak, R.G. Szafran, S. Modelski, Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent, Desalination, 265 (2011) 126–134.
  42. W.S.W. Ngah, S. Fatinathan, Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads, Chem. Eng. J., 143 (2008) 62–72.
  43. M.N. Sahmoune, Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents, Environ. Chem. Lett., 17 (2019) 697–704.