References

  1. H.Y. Fan, G.Y. Yi, Z.T. Zhang, X.X. Zhang, P. Li, C.X. Zhang, L.J. Chen, Y.L. Zhang, Q. Sun, Binary TiO2/RGO photocatalyst for enhanced degradation of phenol and its application in underground coal gasification wastewater treatment, Opt. Mater., 120 (2021) 111482, doi: 10.1016/j.optmat.2021.111482.
  2. O. Amina, M. Sara, P. Senthil Kumar, K. Ashish, P. Velayudhaperumal Chellam, Ö. Gökkuş, Agricultural waste materials for adsorptive removal of phenols, chromium(VI) and cadmium(II) from wastewater: a review, Environ. Res., 204 (2022) 111916, doi: 10.1016/j.envres.2021.111916.
  3. S. Mohammadi, A. Kargari, H. Sanaeepur, K. Abbassian, A. Najafi, E. Mofarrah, Phenol removal from industrial wastewaters: a short review, Desal. Water Treat., 53 (2015) 2215–2234.
  4. M. Alshabib, S.A. Onaizi, A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: current status and potential challenges, Sep. Purif. Technol., 219 (2019) 186–207.
  5. P. Muthamilselvi, R. Karthikeyan, A. Kapoor, S. Prabhakar, Continuous fixed-bed studies for adsorptive remediation of phenol by garlic peel powder, Int. J. Ind. Chem., 9 (2018) 379–390.
  6. J. Wang, Q. Sui, S.L. Yu, Y. Huang, S. Huang, B. Wang, D. Xu, W. Zhao, M. Kong, Y. Zhang, S. Hou, G. Yu, Source apportionment of phenolic compounds based on a simultaneous monitoring of surface water and emission sources: a case study in a typical region adjacent to Taihu Lake watershed, Sci. Total Environ., 722 (2020) 137946, doi: 10.1016/j.scitotenv.2020.137946.
  7. A. Ribas-Agustí, O. Martín-Belloso, R. Soliva-Fortuny, P. Elez- Martínez, Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods, Crit. Rev. Food Sci. Nutr., 58 (2018) 2531–2548.
  8. D. O’Connor, D. Hou, Y.S. Ok, Y. Song, A.K. Sarmah, X. Li, F.M.G. Tack, Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: a review, J. Controlled Release, 283 (2018) 200–213.
  9. A. Othmani, A. Kesraoui, H. Akrout, I. Elaissaoui, M. Seffen, Coupling anodic oxidation, biosorption and alternating current as alternative for wastewater purification, Chemosphere, 249 (2020) 126480, doi:10.1016/j.chemosphere.2020.126480.
  10. A. Doggaz, A. Attour, M. Le Page Mostefa, K. Côme, M. Tlili, F. Lapicque, Removal of heavy metals by electrocoagulation from hydrogenocarbonate-containing waters: compared cases of divalent iron and zinc cations, J. Water Process Eng., 29 (2019) 100796, doi: 10.1016/j.jwpe.2019.100796.
  11. S.Q. Wu, X.J. Tan, K. Liu, J.Y. Lei, L.Z. Wang, J.L. Zhang, TiO2 (B) nanotubes with ultrathin shell for highly efficient photocatalytic fixation of nitrogen, Catal. Today, 335 (2019) 214–220.
  12. S. Garcia-Segura, J. Keller, E. Brillas, J. Radjenovic, Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment, J. Hazard. Mater., 283 (2015) 551–557.
  13. E. Poonguzhali, A. Kapoor, P. Senthil Kumar, S. Prabhakar, Effective separation of toxic phenol from aquatic system using membrane assisted solvent extraction system, Desal. Water Treat., 221 (2021) 316–327.
  14. J. Theerthagiri, S.J. Lee, K. Karuppasamy, S. Arulmani, S. Veeralakshmi, M. Ashokkumar, M.Y. Choi, Application of advanced materials in sonophotocatalytic processes for the remediation of environmental pollutants, J. Hazard. Mater., 412 (2021) 125245, doi: 10.1016/j.jhazmat.2021.125245.
  15. W. Min, L. Jiajun, X. Chuang, F. Li, Sonocatalysis and sonophotocatalysis in CaCu3Ti4O12 ceramics, Ceram. Int., 48 (2022) 11338–11345.
  16. S. Ledys Copete-Pertuz, A. Efraím Serna-Galvis, P. Jersson, A. Ricardo Torres-Palma,
    L. Amanda Mora-Martínez, Coupling chemical oxidation processes and Leptosphaerulina sp. mycoremediation to enhance the removal of recalcitrant organic pollutants in aqueous systems, Sci. Total Environ., 772 (2021) 145449, doi: 10.1016/j.scitotenv.2021.145449.
  17. W. Zhang, Z. Yu, P. Rao, I.M.C. Lo, Uptake and toxicity studies of magnetic TiO2-based nanophotocatalyst in Arabidopsis thaliana, Chemosphere, 224 (2019) 658–667.
  18. S. Feizpoor, A. Habibi-Yangjeh, Ternary TiO2/Fe3O4/CoWO4 nanocomposites: novel magnetic
    visible-light-driven photocatalysts with substantially enhanced activity through p-n heterojunction, J. Colloid Interface Sci., 524 (2018) 325–336.
  19. B. Yuzer, M. Guida, F. Ciner, B. Aktan, M. Iberia Aydin, S. Meric, H. Selcuk, A multifaceted aggregation and toxicity assessment study of sol–gel-based TiO2 nanoparticles during textile wastewater treatment, Desal. Water Treat., 57 (2016) 4966–4973.
  20. V. Suba, M. Saravanabhavan, L.S. Krishna, S. Kaleemulla, E. Ranjith Kumar, G. Rathika, Evaluation of curcumin assistance in the antimicrobial and photocatalytic activity of a carbon based TiO2 nanocomposite, New J. Chem., 44 (2020) 15895–15907.
  21. S. Tamilselvi, M. Asaithambi, P. Sivakumar, Nano-TiO2-loaded activated carbon fiber composite for photodegradation of a textile dye, Desal. Water Treat., 57 (2014) 15495–15502.
  22. X.X. Zhang, Z. Peng, X.Q. Lu, Y. Lv, G.Y. Cai, L. Yang, Z.H. Dong, Microstructural evolution and biological performance of Cu-incorporated TiO2 coating fabricated through one-step micro-arc oxidation, Appl. Surf. Sci., 508 (2020) 144766, doi: 10.1016/j.apsusc.2019.144766.
  23. A. Balakrishnan, K. Gopalram, S. Appunni, Photocatalytic degradation of 2,4-dicholorophenoxyacetic acid by TiO2 modified catalyst: kinetics and operating cost analysis, Environ. Sci. Pollut. Res., 28 (2021) 33331–33343.
  24. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Balkus Jr., Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity, ACS Catal., 2 (2012) 949–956.
  25. Y.C. López, H. Viltres, N.K. Gupta, P. Acevedo-Peña, C. Leyva, Y. Ghaffari, A. Gupta, S. Kim, J. Bae, K.S. Kim, Transition metal-based metal–organic frameworks for environmental applications: a review, Environ. Chem. Lett., 19 (2021) 1295–1334.
  26. M. Tong, D. Sun, R. Zhang, H. Liu, R. Chen, Preparation of Si–α-Fe2O3/CdS composites with enhanced visible-light photocatalytic activity for p-nitrophenol degradation, J. Alloys Compd., 862 (2021) 158271, doi: 10.1016/j.jallcom.2020.158271.
  27. Q. Xiao, C. Chuntao, L. Jianbin, Q. Wei, Z. Lei, D.P. Sun, Engineered defect-rich TiO2/g-C3N4 heterojunction: a visible light-driven photocatalyst for efficient degradation of phenolic wastewater, Chemosphere, 286 (2022) 131696, doi: 10.1016/j.chemosphere.2021.131696.
  28. S.Q. Wu, C.X. He, L.Z. Wang, J.L. Zhang, High-efficiency electron tandem flow mode on carbon nitride/titanium dioxide heterojunction for visible light nitrogen photofixation, Chem. Eng. J., 443 (2022) 136425, doi:10.1016/j.cej.2022.136425.
  29. S. Wang, L.N. Bai, H.M. Sun, Q. Jiang, J.S. Lian, Structure and photocatalytic property of Mo-doped TiO2 nanoparticles, Powder Technol., 244 (2013) 9–15.
  30. L.B. Shun, Z.X. Jian, The synergetic effect of V and Fe-co-doping in TiO2 studied from the DFT + U first-principle calculation, Appl. Surf. Sci., 399 (2017) 654–662.
  31. Z.-Q. Li, H.-L. Wang, L.-Y. Zi, J.-J. Zhang, Y.-S. Zhang, Preparation and photocatalytic performance of magnetic TiO2–Fe3O4/graphene (RGO) composites under VIS-light irradiation, Ceram. Int., 41 (2015) 10634–10643.
  32. F. Ghasemy-Piranloo, S. Dadashian, F. Bavarsiha, Fe3O4/SiO2/TiO2–Ag cubes with core/shell/shell
    nano-structure: synthesis, characterization and efficient photo-catalytic for phenol degradation, J. Mater. Sci.: Mater. Electron., 30 (2019) 12757–12768.
  33. D. Wang, J. Yang, X. Li, J. Wang, H. Zhai, J. Lang, H. Song, Effect of thickness and microstructure of TiO2 shell on photocatalytic performance of magnetic separable Fe3O4/SiO2/mTiO2 coreshell composites, Phys. Status Solidi A, 214 (2017) 1600665, doi: 10.1002/pssa.201600665.
  34. P. Chanhom, N. Charoenlap, B. Tomapatanaget, N. Insin, Colloidal titania-silica-iron oxide nanocomposites and the effect from silica thickness on the photocatalytic and bactericidal activities, J. Magn. Magn. Mater., 427 (2017) 54–59.
  35. W. Zhao, S. Liu, S. Zhang, R. Wang, K. Wang, Preparation and visible-light photocatalytic activity of N-doped TiO2 by plasmaassisted sol–gel method, Catal. Today, 337 (2019) 37–43.
  36. S.P. Onkani, P.N. Diagboya, F.M. Mtunzi, M.J. Klink, B.I. Olu- Owolabi, V. Pakade, Comparative study of the photocatalytic degradation of 2–chlorophenol under UV irradiation using pristine and Ag-doped species of TiO2, ZnO and ZnS photocatalysts, J. Environ. Manage., 260 (2020) 110145, doi:10.1016/j.jenvman.2020.110145.
  37. Y. Liu, S. Zhou, F. Yang, H. Qin, Y. Kong, Degradation of phenol in industrial wastewater over the F–Fe/TiO2 photocatalysts under visible light illumination, Chin. J. Chem. Eng., 24 (2016) 1712–1718.
  38. A. Dixit, A.K. Mungray, M. Chakraborty, Photochemical oxidation of phenol and chlorophenol
    by UV/H2O2/TiO2 process: a kinetic study, Int. J. Chem. Eng. Appl., 1 (2010) 247–250.
  39. B. MirzaHedayat, M. Noorisepehr, E. Dehghanifard, A. Esrafili, R. Norozi, Evaluation of photocatalytic degradation of 2,4-dinitrophenol from synthetic wastewater using Fe3O4@SiO2@TiO2/rGO magnetic nanoparticles, J. Mol. Liq., 264 (2018) 571–578.
  40. A. Banisharif, A.A. Khodadadi, Y. Mortazavi, A.A. Firooz, J. Beheshtian, S. Agah, S. Menbari, Highly active
    Fe2O3-doped TiO2 photocatalyst for degradation of trichloroethylene in air under UV and visible light irradiation: experimental and computational studies, Appl. Catal., B, 165 (2015) 209–221.
  41. J.A. Navío, G. Colón, M.I. Litter, G.N. Bianco, Synthesis, characterization and photocatalytic properties
    of iron-doped titania semiconductors prepared from TiO2 and iron(III) acetylacetonate, J. Mol. Catal. A: Chem., 106 (1996) 267–276.
  42. F. Ghasemy‑Piranloo, S. Dadashian, F. Bavarsiha, Fe3O4/SiO2/TiO2–Ag cubes with core/shell/shell nano‑structure: synthesis, characterization and efficient photo‑catalytic for phenol degradation. J. Mater. Sci.: Mater. Electron., 30 (2019) 12757–12768.
  43. H. Kiziltaş, T. Tekin, D. Tekin, Preparation and characterization of recyclable Fe3O4@SiO2@TiO2 composite photocatalyst, and investigation of the photocatalytic activity, Chem. Eng. Commun., 208 (2021) 1041–1053.
  44. S. Banerjee, P. Benjwal, M. Singh, K.K. Kar, Graphene oxide (rGO)-metal oxide (TiO2/Fe3O4) based nanocomposites for the removal of methylene blue, Appl. Surf. Sci., 439 (2018) 560–568.
  45. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-Graphene composite as a high performance photocatalyst, ACS Nano, 4 (2010) 380–386.
  46. Y. Dai, Y. Jing, J. Zeng, Q. Qi, C. Wang, D. Goldfeld, C. Xu, Y. Zheng, Y. Sun, Nanocables composed of anatase nanofibers wrapped in UV-light reduced graphene oxide and their enhancement of photoinduced electron transfer in photoanodes, J. Mater. Chem., 21 (2011) 18174–18179.
  47. B. Jiang, C. Tian, Q. Pan, Z. Jiang, J.-Q. Wang, W. Yan, H. Fu, Enhanced photocatalytic activity and electron transfer mechanisms of graphene/TiO2 with exposed {001} facets, J. Phys. Chem. C, 115 (2011) 23718–23725.