References
- H.Y. Fan, G.Y. Yi, Z.T. Zhang, X.X. Zhang, P. Li, C.X. Zhang,
L.J. Chen, Y.L. Zhang, Q. Sun, Binary TiO2/RGO photocatalyst
for enhanced degradation of phenol and its application in
underground coal gasification wastewater treatment, Opt.
Mater., 120 (2021) 111482, doi: 10.1016/j.optmat.2021.111482.
- O. Amina, M. Sara, P. Senthil Kumar, K. Ashish, P. Velayudhaperumal
Chellam, Ö. Gökkuş, Agricultural waste materials
for adsorptive removal of phenols, chromium(VI) and
cadmium(II) from wastewater: a review, Environ. Res.,
204 (2022) 111916, doi: 10.1016/j.envres.2021.111916.
- S. Mohammadi, A. Kargari, H. Sanaeepur, K. Abbassian,
A. Najafi, E. Mofarrah, Phenol removal from industrial
wastewaters: a short review, Desal. Water Treat., 53 (2015)
2215–2234.
- M. Alshabib, S.A. Onaizi, A review on phenolic wastewater
remediation using homogeneous and heterogeneous enzymatic
processes: current status and potential challenges, Sep. Purif.
Technol., 219 (2019) 186–207.
- P. Muthamilselvi, R. Karthikeyan, A. Kapoor, S. Prabhakar,
Continuous fixed-bed studies for adsorptive remediation
of phenol by garlic peel powder, Int. J. Ind. Chem., 9 (2018)
379–390.
- J. Wang, Q. Sui, S.L. Yu, Y. Huang, S. Huang, B. Wang, D. Xu,
W. Zhao, M. Kong, Y. Zhang, S. Hou, G. Yu, Source apportionment
of phenolic compounds based on a simultaneous monitoring of
surface water and emission sources: a case study in a typical
region adjacent to Taihu Lake watershed, Sci. Total Environ.,
722 (2020) 137946, doi: 10.1016/j.scitotenv.2020.137946.
- A. Ribas-Agustí, O. Martín-Belloso, R. Soliva-Fortuny, P. Elez-
Martínez, Food processing strategies to enhance phenolic
compounds bioaccessibility and bioavailability in plant-based
foods, Crit. Rev. Food Sci. Nutr., 58 (2018) 2531–2548.
- D. O’Connor, D. Hou, Y.S. Ok, Y. Song, A.K. Sarmah, X. Li,
F.M.G. Tack, Sustainable in situ remediation of recalcitrant
organic pollutants in groundwater with controlled release
materials: a review, J. Controlled Release, 283 (2018) 200–213.
- A. Othmani, A. Kesraoui, H. Akrout, I. Elaissaoui, M. Seffen,
Coupling anodic oxidation, biosorption and alternating current
as alternative for wastewater purification, Chemosphere,
249 (2020) 126480, doi:10.1016/j.chemosphere.2020.126480.
- A. Doggaz, A. Attour, M. Le Page Mostefa, K. Côme, M. Tlili,
F. Lapicque, Removal of heavy metals by electrocoagulation
from hydrogenocarbonate-containing waters: compared cases
of divalent iron and zinc cations, J. Water Process Eng., 29 (2019)
100796, doi: 10.1016/j.jwpe.2019.100796.
- S.Q. Wu, X.J. Tan, K. Liu, J.Y. Lei, L.Z. Wang, J.L. Zhang, TiO2 (B)
nanotubes with ultrathin shell for highly efficient photocatalytic
fixation of nitrogen, Catal. Today, 335 (2019) 214–220.
- S. Garcia-Segura, J. Keller, E. Brillas, J. Radjenovic, Removal
of organic contaminants from secondary effluent by anodic
oxidation with a boron-doped diamond anode as tertiary
treatment, J. Hazard. Mater., 283 (2015) 551–557.
- E. Poonguzhali, A. Kapoor, P. Senthil Kumar, S. Prabhakar,
Effective separation of toxic phenol from aquatic system using
membrane assisted solvent extraction system, Desal. Water
Treat., 221 (2021) 316–327.
- J. Theerthagiri, S.J. Lee, K. Karuppasamy, S. Arulmani,
S. Veeralakshmi, M. Ashokkumar, M.Y. Choi, Application of
advanced materials in sonophotocatalytic processes for the
remediation of environmental pollutants, J. Hazard. Mater.,
412 (2021) 125245, doi: 10.1016/j.jhazmat.2021.125245.
- W. Min, L. Jiajun, X. Chuang, F. Li, Sonocatalysis and sonophotocatalysis
in CaCu3Ti4O12 ceramics, Ceram. Int., 48 (2022)
11338–11345.
- S. Ledys Copete-Pertuz, A. Efraím Serna-Galvis, P. Jersson,
A. Ricardo Torres-Palma,
L. Amanda Mora-Martínez, Coupling
chemical oxidation processes and Leptosphaerulina sp. mycoremediation
to enhance the removal of recalcitrant organic
pollutants in aqueous systems, Sci. Total Environ., 772 (2021)
145449, doi: 10.1016/j.scitotenv.2021.145449.
- W. Zhang, Z. Yu, P. Rao, I.M.C. Lo, Uptake and toxicity studies
of magnetic TiO2-based nanophotocatalyst in Arabidopsis
thaliana, Chemosphere, 224 (2019) 658–667.
- S. Feizpoor, A. Habibi-Yangjeh, Ternary TiO2/Fe3O4/CoWO4 nanocomposites: novel magnetic
visible-light-driven photocatalysts
with substantially enhanced activity through p-n
heterojunction, J. Colloid Interface Sci., 524 (2018) 325–336.
- B. Yuzer, M. Guida, F. Ciner, B. Aktan, M. Iberia Aydin, S. Meric,
H. Selcuk, A multifaceted aggregation and toxicity assessment
study of sol–gel-based TiO2 nanoparticles during textile
wastewater treatment, Desal. Water Treat., 57 (2016) 4966–4973.
- V. Suba, M. Saravanabhavan, L.S. Krishna, S. Kaleemulla,
E. Ranjith Kumar, G. Rathika, Evaluation of curcumin
assistance in the antimicrobial and photocatalytic activity of
a carbon based TiO2 nanocomposite, New J. Chem., 44 (2020)
15895–15907.
- S. Tamilselvi, M. Asaithambi, P. Sivakumar, Nano-TiO2-loaded
activated carbon fiber composite for photodegradation of
a textile dye, Desal. Water Treat., 57 (2014) 15495–15502.
- X.X. Zhang, Z. Peng, X.Q. Lu, Y. Lv, G.Y. Cai, L. Yang,
Z.H. Dong, Microstructural evolution and biological
performance of Cu-incorporated TiO2 coating fabricated through
one-step micro-arc oxidation, Appl. Surf. Sci., 508 (2020) 144766,
doi: 10.1016/j.apsusc.2019.144766.
- A. Balakrishnan, K. Gopalram, S. Appunni, Photocatalytic
degradation of 2,4-dicholorophenoxyacetic acid by TiO2
modified catalyst: kinetics and operating cost analysis, Environ.
Sci. Pollut. Res., 28 (2021) 33331–33343.
- S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal,
K.J. Balkus Jr., Hydrothermal synthesis of graphene-TiO2
nanotube composites with enhanced photocatalytic activity,
ACS Catal., 2 (2012) 949–956.
- Y.C. López, H. Viltres, N.K. Gupta, P. Acevedo-Peña, C. Leyva,
Y. Ghaffari, A. Gupta, S. Kim, J. Bae, K.S. Kim, Transition
metal-based metal–organic frameworks for environmental
applications: a review, Environ. Chem. Lett., 19 (2021)
1295–1334.
- M. Tong, D. Sun, R. Zhang, H. Liu, R. Chen, Preparation
of Si–α-Fe2O3/CdS composites with enhanced visible-light
photocatalytic activity for p-nitrophenol degradation, J. Alloys
Compd., 862 (2021) 158271, doi: 10.1016/j.jallcom.2020.158271.
- Q. Xiao, C. Chuntao, L. Jianbin, Q. Wei, Z. Lei, D.P. Sun,
Engineered defect-rich TiO2/g-C3N4 heterojunction: a visible
light-driven photocatalyst for efficient degradation of phenolic
wastewater, Chemosphere, 286 (2022) 131696, doi: 10.1016/j.chemosphere.2021.131696.
- S.Q. Wu, C.X. He, L.Z. Wang, J.L. Zhang, High-efficiency
electron tandem flow mode on carbon nitride/titanium dioxide
heterojunction for visible light nitrogen photofixation, Chem.
Eng. J., 443 (2022) 136425, doi:10.1016/j.cej.2022.136425.
- S. Wang, L.N. Bai, H.M. Sun, Q. Jiang, J.S. Lian, Structure
and photocatalytic property of Mo-doped TiO2 nanoparticles,
Powder Technol., 244 (2013) 9–15.
- L.B. Shun, Z.X. Jian, The synergetic effect of V and Fe-co-doping
in TiO2 studied from the DFT + U first-principle calculation,
Appl. Surf. Sci., 399 (2017) 654–662.
- Z.-Q. Li, H.-L. Wang, L.-Y. Zi, J.-J. Zhang, Y.-S. Zhang,
Preparation and photocatalytic performance of magnetic TiO2–Fe3O4/graphene (RGO) composites under VIS-light irradiation,
Ceram. Int., 41 (2015) 10634–10643.
- F. Ghasemy-Piranloo, S. Dadashian, F. Bavarsiha, Fe3O4/SiO2/TiO2–Ag cubes with core/shell/shell
nano-structure:
synthesis, characterization and efficient photo-catalytic for
phenol degradation, J. Mater. Sci.: Mater. Electron., 30 (2019)
12757–12768.
- D. Wang, J. Yang, X. Li, J. Wang, H. Zhai, J. Lang, H. Song, Effect
of thickness and microstructure of TiO2 shell on photocatalytic
performance of magnetic separable Fe3O4/SiO2/mTiO2 coreshell
composites, Phys. Status Solidi A, 214 (2017) 1600665,
doi: 10.1002/pssa.201600665.
- P. Chanhom, N. Charoenlap, B. Tomapatanaget, N. Insin,
Colloidal titania-silica-iron oxide nanocomposites and the effect
from silica thickness on the photocatalytic and bactericidal
activities, J. Magn. Magn. Mater., 427 (2017) 54–59.
- W. Zhao, S. Liu, S. Zhang, R. Wang, K. Wang, Preparation and
visible-light photocatalytic activity of N-doped TiO2 by plasmaassisted
sol–gel method, Catal. Today, 337 (2019) 37–43.
- S.P. Onkani, P.N. Diagboya, F.M. Mtunzi, M.J. Klink, B.I. Olu-
Owolabi, V. Pakade, Comparative study of the photocatalytic
degradation of 2–chlorophenol under UV irradiation using
pristine and Ag-doped species of TiO2, ZnO and ZnS
photocatalysts, J. Environ. Manage., 260 (2020) 110145,
doi:10.1016/j.jenvman.2020.110145.
- Y. Liu, S. Zhou, F. Yang, H. Qin, Y. Kong, Degradation of phenol
in industrial wastewater over the F–Fe/TiO2 photocatalysts
under visible light illumination, Chin. J. Chem. Eng., 24 (2016)
1712–1718.
- A. Dixit, A.K. Mungray, M. Chakraborty, Photochemical
oxidation of phenol and chlorophenol
by UV/H2O2/TiO2 process:
a kinetic study, Int. J. Chem. Eng. Appl., 1 (2010) 247–250.
- B. MirzaHedayat, M. Noorisepehr, E. Dehghanifard, A. Esrafili,
R. Norozi, Evaluation of photocatalytic degradation of
2,4-dinitrophenol from synthetic wastewater using Fe3O4@SiO2@TiO2/rGO magnetic nanoparticles, J. Mol. Liq., 264 (2018)
571–578.
- A. Banisharif, A.A. Khodadadi, Y. Mortazavi, A.A. Firooz,
J. Beheshtian, S. Agah, S. Menbari, Highly active
Fe2O3-doped
TiO2 photocatalyst for degradation of trichloroethylene in
air under UV and visible light irradiation: experimental and
computational studies, Appl. Catal., B, 165 (2015) 209–221.
- J.A. Navío, G. Colón, M.I. Litter, G.N. Bianco, Synthesis,
characterization and photocatalytic properties
of iron-doped
titania semiconductors prepared from TiO2 and iron(III)
acetylacetonate, J. Mol. Catal. A: Chem., 106 (1996) 267–276.
- F. Ghasemy‑Piranloo, S. Dadashian, F. Bavarsiha, Fe3O4/SiO2/TiO2–Ag cubes with core/shell/shell nano‑structure:
synthesis, characterization and efficient photo‑catalytic for
phenol degradation. J. Mater. Sci.: Mater. Electron., 30 (2019)
12757–12768.
- H. Kiziltaş, T. Tekin, D. Tekin, Preparation and characterization
of recyclable Fe3O4@SiO2@TiO2 composite photocatalyst,
and investigation of the photocatalytic activity, Chem. Eng.
Commun., 208 (2021) 1041–1053.
- S. Banerjee, P. Benjwal, M. Singh, K.K. Kar, Graphene oxide
(rGO)-metal oxide (TiO2/Fe3O4) based nanocomposites for the
removal of methylene blue, Appl. Surf. Sci., 439 (2018) 560–568.
- H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-Graphene composite
as a high performance photocatalyst, ACS Nano, 4 (2010)
380–386.
- Y. Dai, Y. Jing, J. Zeng, Q. Qi, C. Wang, D. Goldfeld, C. Xu,
Y. Zheng, Y. Sun, Nanocables composed of anatase nanofibers
wrapped in UV-light reduced graphene oxide and their
enhancement of photoinduced electron transfer in photoanodes,
J. Mater. Chem., 21 (2011) 18174–18179.
- B. Jiang, C. Tian, Q. Pan, Z. Jiang, J.-Q. Wang, W. Yan,
H. Fu, Enhanced photocatalytic activity and electron transfer
mechanisms of graphene/TiO2 with exposed {001} facets,
J. Phys. Chem. C, 115 (2011) 23718–23725.