References
- N. Al-Bastaki, Removal of methyl orange dye and Na2SO4 salt
from synthetic waste water using reverse osmosis, Chem. Eng.
Process. Process Intensif., 43 (2004) 1561–1567.
- F. Zhang, A. Yediler, X. Liang, A. Kettrup, Effects of dye
additives on the ozonation process and oxidation
by-products:
a comparative study using hydrolyzed C.I. Reactive Red 120,
Dyes Pigm., 60 (2004) 1–7.
- V. Golob, A. Vinder, M. Simonic, Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents,
Dyes Pigm., 67 (2005) 93–97.
- A. Rafiq, M. Ikram, S. Ali, F. Niaz, M. Khan, Q. Khan, M. Maqbool,
Photocatalytic degradation of dyes using semiconductor
photocatalysts to clean industrial water pollution, J. Ind. Eng.
Chem., 97 (2021) 111–128.
- S. Belekbir, M. El Azzouzi, A. El Hamidi, L. Rodríguez-Lorenzo,
J.A. Santaballa, M. Canle, Improved photocatalyzed degradation
of phenol, as a model pollutant, over metal-impregnated
nanosized TiO2, Nanomaterials, 10 (2020) 996–1022.
- A. Akbari, Z. Sabouri, H.A. Hosseini, A. Hashemzadeh,
M. Khatami, M. Darroudi, Effect of nickel oxide nanoparticles as
a photocatalyst in dyes degradation and evaluation of effective
parameters in their removal from aqueous environments,
Inorg. Chem. Commun., 115 (2020) 107867, doi: 10.1016/j.inoche.2020.107867.
- S. Zinatloo-Ajabshir, M. Baladi, O. Amiri, M. Salavati-Niasari,
Sonochemical synthesis and characterization of silver tungstate
nanostructures as visible-light-driven photocatalyst for wastewater
treatment, Sep. Purif. Technol., 248 (2020) 117062,
doi: 10.1016/j.seppur.2020.117062.
- Z. Sabouri, M. Sabouri, M.S. Amiri, M. Khatami, M. Darroudi,
Plant-based synthesis of cerium oxide nanoparticles using
Rheum turkestanicum extract and evaluation of their cytotoxicity
and photocatalytic properties, Mater. Technol., 37 (2022)
555–568.
- K.K. Kefeni, B.B. Mamba, Photocatalytic application of spinel
ferrite nanoparticles and nanocomposites in wastewater
treatment: review, Sustainable Mater. Technol., 23 (2020)
140–152.
- A. Ghaderi, S. Abbasi, F. Farahbod, Synthesis, characterization
and photocatalytic performance of modified ZnO nanoparticles
with SnO2 nanoparticles, Mater. Res. Express, 5 (2018)
1–37.
- Y. Zhang, ZnO Nanostructures: Fabrication and Applications,
Royal Society of Chemistry, Cambridge, 2017.
- C. Karunakaran, V. Rajeswari, P. Gomathisankar, Optical,
electrical, photocatalytic, and bactericidal properties of
microwave synthesized nanocrystalline Ag-ZnO and ZnO,
Solid State Sci., 13 (2011) 923–928.
- E.U. Umukoro, S.S. Madyibi, M.G. Peleyeju, L. Tshwenya,
E.H. Viljoen, J.C. Nagila, O.A. Arotiba, Photocatalytic
application of Pd-ZnO-exfoliated graphite nanocomposite for
the enhanced removal of acid orange 7 dye in water, Solid State
Sci., 74 (2017) 118–124.
- S. Sharma, S. Basu, Visible-light-driven efficient photocatalytic
abatement of recalcitrant pollutants by centimeter-length
MoO3/SiO2 monoliths with long service life, Appl. Mater. Today,
23 (2021) 101033, doi:10.1016/j.apmt.2021.101033.
- L. Dashairya, S. Sharma, A. Rathi, P. Saha, S. Basu, Solarlight-driven photocatalysis by Sb2S3/carbon based composites
towards degradation of noxious organic pollutants,
Mater. Chem. Phys., 273 (2021) 125120, doi:10.1016/j.
matchemphys.2021.125120.
- A. Kundu, S. Sharma, S. Basu, Modulated BiOCl nanoplates
with porous g-C3N4 nanosheets for photocatalytic degradation
of color/colorless pollutants in natural sunlight, J. Phys. Chem.
Solids, 154 (2021) 110064, doi:10.1016/j.jpcs.2021.110064.
- D. Monga, D. Ilager, N.P. Shetti, S. Basu, T.M. Aminabhavi,
2D/2d heterojunction of MoS2/g-C3N4 nanoflowers for enhanced
visible-light-driven photocatalytic and electrochemical
degradation of organic pollutants, J. Environ. Manage.,
274 (2020) 111208, doi: 10.1016/j.jenvman.2020.111208.
- A.M. Oves, R. Kumar, M.A. Barak, Fabrication of ZnOZnS@
polyaniline nanohybrid for enhanced photocatalytic
degradation of 2-chlorophenol and microbial contaminants
in wastewater, Int. Biodeterior. Biodegrad., 119 (2017) 66–77.
- A. Elschne, S. Kirchmeyer, W. Lövenich, U. Merker, K. Reuter,
Principles and Applications of an Intrinsically Conductive
Polymer, CRC Press: Taylor and Francis Group, Boca Raton FL,
2010.
- L. Zhou, Z. Han, G.D. Li, Z. Zhao, Template-free synthesis and
photocatalytic activity of hierarchical hollow ZnO microspheres
composed of radially aligned nanorods, J. Phys. Chem. Solids,
148 (2021) 109719, doi: 10.1016/j.jpcs.2020.109719.
- T. Zou, C. Wang, R. Tanc, W. Song, Y. Cheng, Preparation of
pompon-like ZnO-PANI heterostructure and its applications
for the treatment of typical water pollutants under visible light,
J. Hazard. Mater., 338 (2017) 276–286.
- R. Saravanan, E. Sacari, F. Gracia, M.M. Khan, E. Mosquera,
V.K. Gupta, Conducting PANI stimulated ZnO system for
visible light photocatalytic degradation of coloured dyes,
J. Mol. Liq., 222 (2016) 1029–1033.
- R. Singh, R.B. Choudhary, Ag/AgCl sensitized n-type ZnO
and p-type PANI composite as an active layer for hybrid
solar cell application, Optik, 225 (2021) 165766, doi: 10.1016/j.
ijleo.2020.165766.
- H.V. Vasei, S.M. Masoudpanah, M. Habibollahzadeh, Different
morphologies of ZnO via solution combustion synthesis: the
role of fuel, Mater. Res. Bull., 125 (2020) 110784, doi: 10.1016/j.materresbull.2020.110784.
- G.X. Du, Q. Xue, H. Ding, Z. Li, Mechanochemical effects of
ZnO powder in a wet super-fine grinding system as indicated
by instrumental characterization, Int. J. Miner. Process.,
141 (2015) 15–19.
- Y. Kadri, E. Srasra, I. Bekri-Abbess, P. Herrasti, Facile and ecofriendly
synthesis of polyaniline/ZnO composites for corrosion
protection of AA-2024 aluminium alloy, J. Electroanal. Chem.,
893 (2021) 115335, doi:10.1016/j.jelechem.2021.115335.
- S.P. Armes, J.F. Miller, Optimum reaction conditions for the
polymerization of aniline in aqueous solution by ammonium
persulphate, Synth. Met., 22 (1988) 385–393.
- S.A. Khayyat, M.S. Akhtar, A. Umar, ZnO nanocapsules for
photocatalytic degradation of thionine, Mater. Lett., 81 (2012)
239–241.
- A. Becheri, M. Durr, P.L. Nostro, P. Baglioni, synthesis and
characterization of zinc oxide nanoparticles: application of
textiles as UV-absorbers, J. Nanopart. Res., 10 (2008) 679–689.
- H. Abdullah, N.P. Ariyanto, S. Shaari, B. Yuliarto, S. Junaidi,
Influence of structural and chemical properties on electron
transport in mesoporous ZnO-based dye-sensitized solar cell,
Am. J. Eng. Appl. Sci., 2 (2009) 236–240.
- K. Kakiuchi, E. Hosono, T. Kimura, H. Imai, S. Fujihara,
Fabrication of mesoporous ZnO nanosheets from precursor
templates grown in aqueous solutions, J. Sol-Gel Sci. Technol.,
39 (2006) 63–72.
- V. Eskizeybek, F. Sarı, H. Gulce, A. Gulce, A. Avci, Preparation of
the new polyaniline/ZnO nanocomposite and its photocatalytic
activity for degradation of methylene blue and malachite green
dyes under UV and natural sun lights irradiations, Appl. Catal.,
B, 119–120 (2012) 197–206.
- M. Alam, N.M. Alandis, A.A. Ansari, M.R. Shaik, Optical
and electrical conducting properties of polyaniline/tin oxide
nanocomposite, J. Nanomater., 6 (2013) 1–5.
- A. Mostafaei, A. Zolriasatein, Synthesis and characterization
of conducting polyaniline nanocomposites containing ZnO
nanorods, Prog. Nat. Sci.: Mater. Int., 22 (2012) 273–280.
- K.G.B. Alves, J.F. Felix, E.F. de Melo, C.G. dos Santos, C.A.S.
Andrade, C.P. de Melo, Characterization of ZnO/polyaniline
nanocomposites prepared by using surfactant solutions as
polymerization media, J. Appl. Polym. Sci., 125 (2011) 141–147.
- S. Rajamanickam, S.M. Mohammad, Z. Hassan, Effect of zinc
acetate dihydrate concentration on morphology of ZnO seed
layer and ZnO nanorods grown by hydrothermal method,
Colloid Interface Sci. Commun., 38 (2020) 100312, doi: 10.1016/j.
colcom.2020.100312.
- R. Nosrati, A. Olad, R. Maramifar, Degradation of ampicillin
antibiotic in aqueous solution by ZnO/polyaniline
nanocomposite as photocatalyst under sunlight irradiation,
Environ. Sci. Pollut. Res., 19 (2012) 2291–2299.
- D. Liu, Y. Lv, M. Zhang, Y. Liu, Y. Zhu, R. Zong, Y. Zhu, Defectrelated
photoluminescence and photocatalytic properties
of porous ZnO nanosheets, J. Mater. Chem. A, 2 (2014)
15377–15388.
- Z. Pei, L. Ding, M. Lu, Z. Fan, S. Weng, J. Hu, P. Liu, Synergistic
effect in polyaniline-hybrid defective ZnO with enhanced
photocatalytic activity and stability, J. Phys. Chem. C, 118 (2014)
9570–9577.
- X. Xia, Q. Hao, W. Lei, W. Wang, D. Sun, X. Wang, Nanostructured
ternary composites of
graphene/Fe2O3/polyaniline for highperformance
supercapacitors, J. Mater. Chem., 22 (2012)
16844–16850.
- N. Salah, S.S. Habib, Z.H. Khan, A. Memic, A. Azam, E. Alarfaj,
N. Zahed, S. Al-Hamedi, High-energy ball milling technique for
ZnO nanoparticles as antibacterial material, Int. J. Nanomed.,
6 (2011) 863–869.
- L. Yu, W. Guo, M. Sun, J. He, Effect of grinding on the
photocatalytic activity of commercial ZnO powder, Adv. Mater.
Res., 785–786 (2013) 498–501.
- I. Sedenkova, M. Trchova, J. Stejskal, Thermal degradation of
polyaniline films prepared in solutions of strong and weak
acids and in water-FTIR and Raman spectroscopic studies,
Polym. Degrad. Stab., 93 (2008) 2147–2157.
- S. Abbasi, M.S. Ekrami-Kakhki, The influence of ZnO
nanoparticles amount on the optimisation of photo degradation
of methyl orange using decorated MWCNTs, Prog. Ind. Ecol.,
13 (2019) 3–15.
- S. Abbasi, Adsorption of dye organic pollutant using magnetic
ZnO embedded on the surface of graphene oxide, J. Inorg.
Organomet. Polym. Mater., 30 (2020) 1924–1934.
- M. Wondwossen, Y. Op, K. Tesfahun, Photocatalytic removal of
methyl orange dye by polyaniline modified ZnO using visible
radiation, Sci. Technol. Arts Res. J., 2 (2014) 93–102.
- S.M. El-Khouly, G.M. Mohamed, N.A. Fathy, G.A. Fagal, Effect
of nanosized CeO2 or ZnO loading on adsorption and catalytic
properties of activated carbon, Adsorpt. Sci. Technol., 35 (2017)
1–15, doi: 10.1177/0263617417698704.
- H.K. Farag, R.M.M. Aboelenin, N.A. Fathy, Photodegradation
of methyl orange dye by ZnO loaded onto carbon xerogels
composites, Asia-Pac. J. Chem. Eng., 12 (2017) 4–12.
- J. Han, H.Y. Zeng, S. Xu, C.R. Chen, X.J. Liu, Catalytic properties
of CuMgAlO catalyst and degradation mechanism in CWPO
of methyl orange, Appl. Catal. A, 527 (2016) 72–80.