References

  1. S.P. Dubey, A.D. Dwivedi, M. Sillanpää, H. Lee, Y.-N. Kwon, C. Lee, Adsorption of As(V) by boehmite and alumina of different morphologies prepared under hydrothermal conditions, Chemosphere, 169 (2017) 99–106.
  2. N.B. Singh, G. Nagpal, S. Agrawal, Rachna, Water purification by using adsorbents: a review, Environ. Technol. Innovation, 11 (2018)187–240.
  3. Y. Li, S. Wang, Z. Shen, X. Li, Q. Zhou, Y. Sun, T. Wang, Y. Liu, Q. Gao, Gradient adsorption of methylene blue and crystal violet onto compound microporous silica from aqueous medium, ACS Omega, 5 (2020) 28382–28392.
  4. F. Mashkoor, A. Nasar, Magsorbents: potential candidates in wastewater treatment technology – a review on the removal of methylene blue dye, J. Magn. Magn. Mater., 500 (2020) 166408, doi:10.1016/j.jmmm.2020.166408.
  5. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci., 209 (2014) 172–184.
  6. M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents:
    a review, J. Hazard. Mater., 177 (2010) 70–80.
  7. F. Chi, B. Song, B. Yang, Y. Lv, S. Ran, Q. Huo, Activation of peroxymonosulfate by BiFeO3 microspheres under visible light irradiation for decomposition of organic pollutants, RSC Adv., 5 (2015) 67412–67417.
  8. Y. Kuang, X. Zhang, S. Zhou, Adsorption of methylene blue in water onto activated carbon by surfactant modification, Water, 12 (2020) 587, doi: 10.3390/w12020587.
  9. S. Liu, H. Ge, C. Wang, C. Wang, Y. Zou, J. Liu, Agricultural waste/graphene oxide 3D bio-adsorbent for highly efficient removal of methylene blue from water pollution, Sci. Total Environ., 628–629 (2018) 959–968.
  10. T.M.V. Ngo, T.H. Truong, T.H.L. Nguyen, T.T.A. Duong, T.H. Vu, T.T.T. Nguyen, T.D. Pham, Surface modified laterite soil with an anionic surfactant for the removal of a cationic dye (crystal violet) from an aqueous solution, Water Air Soil Pollut., 231 (2020) 285, doi: 10.1007/s11270-020-04647-2.
  11. W. Wei, L. Yang, W.H. Zhong, S.Y. Li, J. Cui, Z.G. Wei, Fast removal of methylene blue from aqueous solution by adsorption onto poorly crystalline hydroxyapatite nanoparticles, Dig. J. Nanomater. Biostruct., 10 (2015) 1343–1363.
  12. P. Zhang, D. O’Connor, Y. Wang, L. Jiang, T. Xia, L. Wang, D.C.W. Tsang, Y.S. Ok, D. Hou, A green biochar/iron oxide composite for methylene blue removal, J. Hazard. Mater., 384 (2020) 121286, doi:10.1016/j.jhazmat.2019.121286.
  13. O.S. Omer, M.A. Hussein, B.H.M. Hussein, A. Mgaidi, Adsorption thermodynamics of cationic dyes (methylene blue and crystal violet) to a natural clay mineral from aqueous solution between 293.15 and 323.15 K, Arabian J. Chem., 11 (2018) 615–623.
  14. P.P. Kyi, J.O. Quansah, C.G. Lee, J.-K. Moon, S.-J. Park, The removal of crystal violet from textile wastewater using palm kernel shell-derived biochar, Appl. Sci., 10 (2020) 2251, doi: 10.3390/app10072251.
  15. Z.U. Zango, S.S. Imam, Evaluation of microcrystalline cellulose from groundnut shell for the removal of crystal violet and methylene blue, Nanosci. Nanotechnol., 8 (2018) 1–6.
  16. M. Sarabadan, H. Bashiri, S.M. Mousavi, Removal of crystal violet dye by an efficient and low cost adsorbent: modeling, kinetic, equilibrium and thermodynamic studies, Korean J. Chem. Eng., 36 (2019) 1575–1586.
  17. D. Pathania, S. Sharma, P. Singh, Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast, Arabian J. Chem., 10 (2017) S1445–S1451.
  18. Q. Li, Y. Zhao, L. Wang, W. Aiqin, Adsorption characteristics of methylene blue onto the
    N-succinyl-chitosan-g-polyacrylamide/attapulgite composite, Korean J. Chem. Eng., 28 (2011) 1658–1664.
  19. D. Ghosh, K.G. Bhattacharyya, Adsorption of methylene blue on kaolinite, Appl. Clay Sci., 20 (2002) 295–300.
  20. I. Anastopoulos, A. Bhatnagar, B.H. Hameed, Y.S. Ok, M. Omirou, A review on waste-derived adsorbents from sugar industry for pollutant removal in water and wastewater, J. Mol. Liq., 240 (2017) 179–188.
  21. S. Chowdhury, S. Chakraborty, P.D. Saha, Removal of crystal violet from aqueous solution by adsorption onto eggshells: equilibrium, kinetics, thermodynamics and artificial neural network modeling, Waste Biomass Valorization, 4 (2013) 655–664.
  22. A.R. Abbasi, M. Karimi, K. Daasbjerg, Efficient removal of crystal violet and methylene blue from wastewater by ultrasound nanoparticles Cu-MOF in comparison with mechanosynthesis method, Ultrason. Sonochem., 37 (2017) 182–191.
  23. H.A. Ahsaine, Z. Anfar, M. Zbair, M. Ezahri, N. El Alem, Adsorptive removal of methylene blue and crystal violet onto micro-mesoporous Zr3O/activated carbon composite: a joint experimental and statistical modeling considerations, J. Chem., 2018 (2018) 1–14, doi: 10.1155/2018/6982014.
  24. T. Aysu, M.M. Küçük, Removal of crystal violet and methylene blue from aqueous solutions by activated carbon prepared from Ferula orientalis, Int. J. Environ. Sci. Technol., 12 (2015) 2273–2284.
  25. S. Al-Shahrani, Phenomena of removal of crystal violet from wastewater using Khulays natural bentonite, J. Chem., 1 (2020), doi: 10.1155/2020/4607657.
  26. K. Mohanty, J.T. Naidu, B.C. Meikap, M.N. Biswas, Removal of crystal violet from wastewater by activated carbons prepared from rice husk, Ind. Eng. Chem. Res., 45 (2006) 5165–5171.
  27. L.S. Maia, A.I.C. da Silva, E.S. Carneiro, F.M. Monticelli, F.R. Pinhati, D.R. Mulinari, Activated carbon from palm fibres used as an adsorbent for methylene blue removal, J. Polym. Environ., 29 (2021) 1162–1175.
  28. A. Adak, M. Bandyopadhyay, A. Pal, Removal of crystal violet dye from wastewater by surfactant-modified alumina, Sep. Purif. Technol., 44 (2005) 139–144.
  29. A. Awadallah-F, S.A. Al-Muhtaseb, Removal of crystal violet from wastewater using resorcinol-formaldehyde carbon xerogels, Sep. Sci. Technol., 51 (2016) 403–415.
  30. T.K. Hussein, N.A. Jasim, Removal of crystal violet and methylene blue from synthetic industrial wastewater using fennel seed as an adsorbent, J. Eng. Sci.Technol., 14 (2019) 2947–2963.
  31. Q. Bai, Q. Xiong, C. Li, Y. Shen, H. Uyama, Hierarchical porous cellulose/activated carbon composite monolith for efficient adsorption of dyes, Cellulose, 24 (2017) 4275–4289.
  32. M.R. Malekbala, M.A. Khan, S. Hosseini, L.C. Abdullah, T.S.Y. Choong, Adsorption/desorption of cationic dye on surfactant modified mesoporous carbon coated monolith: equilibrium, kinetic and thermodynamic studies, J. Ind. Eng. Chem., 21 (2015) 369–377.
  33. X. He, K.B. Male, P.N. Nesterenko, D. Brabazon, B. Paull, J.H.T. Luong, Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose, ACS Appl. Mater. Interfaces, 5 (2013) 8796–8804.
  34. M. Sharma, S. Hazra, S. Basu, Kinetic and isotherm studies on adsorption of toxic pollutants using porous ZnO@SiO2 monolith, J. Colloid Interface Sci., 504 (2017) 669–679.
  35. S.A. El-Safty, A. Shahat, M.R. Awual, Efficient adsorbents of nanoporous aluminosilicate monoliths for organic dyes from aqueous solution, J. Colloid Interface Sci., 359 (2011) 9–18.
  36. E. Ayranci, O. Duman, In-situ UV-Visible spectroscopic study on the adsorption of some dyes onto activated carbon cloth, Sep. Sci. Technol., 44 (2009) 3735–3752.
  37. O. Duman, S. Tunç, T.G. Polat, Adsorptive removal of triarylmethane dye (Basic red 9) from aqueous solution by sepiolite as effective and low-cost adsorbent, Microporous Mesoporous Mater., 210 (2015) 176–184.
  38. O. Duman, S. Tunç, T.G. Polat, B.K. Bozoğlan, Synthesis of magnetic oxidized multiwalled carbon
    nanotube-κ-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic methylene blue dye adsorption, Carbohydr. Polym., 147 (2016) 79–88.
  39. O. Duman, T.G. Polat, C.Ö. Diker, S. Tunç, Agar/κ-carrageenan composite hydrogel adsorbent for the removal of methylene blue from water, Int. J. Biol. Macromol., 160 (2020) 823–835.
  40. A.A. Al-Massaedh, F.I. Khalili, Removal of thorium(IV) ions from aqueous solution by polyacrylamide-based monoliths: equilibrium, kinetic and thermodynamic studies, J. Radioanal. Nucl. Chem., 327 (2021) 1201–1217.
  41. S. Xie, F. Svec, J.M.J. Fréchet, Porous polymer monoliths: preparation of sorbent materials with high-surface areas and controlled surface chemistry for high-throughput, online, solidphase extraction of polar organic compounds, Chem. Mater., 10 (1998) 4072–4078.
  42. G. Guiochon, Monolithic columns in high-performance liquid chromatography, J. Chromatogr. A, 1168 (2007) 101–168.
  43. Y. Hu, S. Giret, R. Meinusch, J. Han, F-G. Fontaine, F. Kleitz, D. Dominic Lariviere, Selective separation and preconcentration of Th(IV) using organo-functionalized, hierarchically porous silica monoliths, J. Mater. Chem. A, 7 (2019) 289–302.
  44. A.A. Al-Massaedh, F.I. Khalili, Removal of heavy metal ions from aqueous solution by anionic polyacrylamide-based monolith: equilibrium, kinetic and thermodynamic studies, Desal. Water Treat., 228 (2021) 297–311.
  45. M. Sharma, J. Singh, S. Hazra, S. Basu, Remediation of heavy metal ions using hierarchically porous carbon monolith synthesized via nanocasting method, J. Environ. Chem. Eng., 6 (2018) 2829–2836.
  46. A.A. Al-Massaedh, U. Pyell, Mixed-mode acrylamide-based continuous beds bearing tert-butyl groups for capillary electrochromatography synthesized via complexation of N-tert-butylacrylamide with a water-soluble cyclodextrin. Part I: retention properties, J. Chromatogr. A, 1477 (2016) 114–126.
  47. L. Uzun, D. Türkmen, E. Yilmaz, S. Bektas, A. Denizli, Cysteine functionalized poly(hydroxyethyl methacrylate) monolith for heavy metal removal, Colloids Surf., A, 330 (2008) 161–167.
  48. I. Nischang, T.J. Causon, Porous polymer monoliths: from their fundamental structure to analytical engineering applications, TrAC, Trends Anal. Chem., 75 (2016) 108–117.
  49. R.J. Groarke, D. Brabazon, Methacrylate polymer monoliths for separation applications, Materials, 9 (2016) 446–479.
  50. S. Wang, R. Zhang, Column preconcentration of lead in aqueous solution with macroporous epoxy resin-based polymer monolithic matrix, Anal. Chim. Acta, 575 (2006) 166–171.
  51. A.A. Al-Massaedh, M. Schmidt, U. Pyell, U.M. Reinscheid, Elucidation of the enantiodiscrimination properties of a nonracemic chiral alignment medium through gel-based capillary electrochromatography: separation of the mefloquine stereoisomers, ChemistryOpen, 5 (2016) 455–459.
  52. S. Chakraborty, S. Chowdhury, P.D. Saha, Adsorption of crystal violet from aqueous solution onto NaOH-modified rice husk, Carbohydr. Polym., 86 (2011) 1533–1541.
  53. N. Laskar, U. Kumar, Adsorption of crystal violet from wastewater by modified bambusa tulda, KSCE J. Civ. Eng., 22 (2018) 2755–2763.
  54. E. Igberase, P. Osifo, A. Ofomaja, The adsorption of Pb, Zn, Cu, Ni, and Cd by modified ligand in a single component aqueous solution: equilibrium, kinetic, thermodynamic, and desorption studies, Int. J. Anal. Chem., 2017 (2017) 1–15.
  55. D. Robati, Pseudo-second-order kinetic equations for modeling adsorption systems for removal of ammonium ions using multi-walled carbon nanotube, J. Nanostruct. Chem., 3 (2013) 55, doi:10.1186/2193–8865–3-55.
  56. M.T. Ghaneian, A. Bhatnagar, M.H. Ehrampoush, M. Amrollahi, B. Jamshidi, M. Dehvari, M. Taghavi, Biosorption of hexavalent chromium from aqueous solution onto pomegranate seeds: kinetic modeling studies, Int. J. Environ. Sci. Technol., 14 (2017) 331–340.
  57. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  58. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, J. Chem., 2017 (2017), doi: 10.1155/2017/3039817.
  59. S. Liu, Cooperative adsorption on solid surfaces, J. Colloid Interface Sci., 450 (2015) 224–238.
  60. C.H. Giles, D. Smith, A general treatemnt and classification of the solute adsorption isotherm, J. Colloid Interface Sci., 47 (1974) 755–765.
  61. T.S. Anirudhan, S.R. Rejeena, Thorium(IV) removal and recovery from aqueous solutions using
    tannin-modified poly(glycidylmethacrylate)-grafted zirconium oxide densified cellulose, Ind. Eng. Chem. Res., 50 (2011) 13288–13298.
  62. M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and interpretation of adsorption isotherm models:
    a review, J. Hazard. Mater., 393 (2020) 122383, doi: 10.1016/j.jhazmat.2020.122383.
  63. M. Alaqarbeh, F.I. Khalili, O. Kanoun, Manganese ferrite (MnFe2O4) as potential nanosorbent for adsorption of uranium(VI) and thorium(IV), J. Radioanal. Nucl. Chem., 323 (2020) 515–537.
  64. I.A.W. Tan, A.l. Ahmad, B.H. Hameed, Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies, J. Hazard. Mater., 154 (2008) 337–346.
  65. O. Hamdaoui, E. Naffrechoux, Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters, J. Hazard. Mater., 147 (2007) 381–394.
  66. G. Limousin, J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthes, M. Krimissa, Sorption isotherms: a review on physical bases, modeling and measurement, Appl. Geochem., 22 (2007) 249–275.
  67. G. Sharma, Mu. Naushad, Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: isotherm and kinetic modelling, J. Mol. Liq., 310 (2020) 113025, doi:10.1016/j.molliq.2020.113025.
  68. E.E. Jasper, V.O. Ajibola, J.C. Onwuka, Nonlinear regression analysis of the sorption of crystal violet and methylene blue from aqueous solutions onto an agro-waste derived activated carbon, Appl. Water Sci., 10 (2020)132, doi: 10.1007/s13201-020-01218-y.
  69. D.C.W. Tsang, J. Hu, M.Y. Liu, W. Zhang, K.C.K. Lai, I.M.C. Lo, Activated carbon produced from waste wood pallets: adsorption of three classes of dyes, Water Air Soil Pollut., 184 (2007) 141–155.
  70. U.F. Alkaram, A.A. Mukhlis, A.H. Al-Dujaili, The removal of phenol from aqueous solutions by adsorption using surfactantmodified bentonite and kaolinite, J. Hazard. Mater., 169 (2009) 324–332.
  71. O. Duman, S. Tunç, B.K. Bozoğlan, T.G. Polat, Removal of triphenylmethane and reactive azo dyes from aqueous solution by magnetic carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite, J. Alloys Compd., 687 (2016) 370–383.
  72. O. Duman, S. Tunç, T.G. Polat, Determination of adsorptive properties of expanded vermiculite for the removal of C. I. Basic Red 9 from aqueous solution: kinetic, isotherm and thermodynamic studies, Appl. Clay Sci., 109–110 (2015) 22–32.