References
- S.P. Dubey, A.D. Dwivedi, M. Sillanpää, H. Lee, Y.-N. Kwon,
C. Lee, Adsorption of As(V) by boehmite and alumina
of different morphologies prepared under hydrothermal
conditions, Chemosphere, 169 (2017) 99–106.
- N.B. Singh, G. Nagpal, S. Agrawal, Rachna, Water purification
by using adsorbents: a review, Environ. Technol. Innovation,
11 (2018)187–240.
- Y. Li, S. Wang, Z. Shen, X. Li, Q. Zhou, Y. Sun, T. Wang, Y. Liu,
Q. Gao, Gradient adsorption of methylene blue and crystal
violet onto compound microporous silica from aqueous
medium, ACS Omega, 5 (2020) 28382–28392.
- F. Mashkoor, A. Nasar, Magsorbents: potential candidates in
wastewater treatment technology – a review on the removal of
methylene blue dye, J. Magn. Magn. Mater., 500 (2020) 166408,
doi:10.1016/j.jmmm.2020.166408.
- M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal
from aqueous solution by adsorption: a review, Adv. Colloid
Interface Sci., 209 (2014) 172–184.
- M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption
of methylene blue on low-cost adsorbents:
a review, J. Hazard.
Mater., 177 (2010) 70–80.
- F. Chi, B. Song, B. Yang, Y. Lv, S. Ran, Q. Huo, Activation of
peroxymonosulfate by BiFeO3 microspheres under visible light
irradiation for decomposition of organic pollutants, RSC Adv.,
5 (2015) 67412–67417.
- Y. Kuang, X. Zhang, S. Zhou, Adsorption of methylene blue in
water onto activated carbon by surfactant modification, Water,
12 (2020) 587, doi: 10.3390/w12020587.
- S. Liu, H. Ge, C. Wang, C. Wang, Y. Zou, J. Liu, Agricultural
waste/graphene oxide 3D bio-adsorbent for highly efficient
removal of methylene blue from water pollution, Sci. Total
Environ., 628–629 (2018) 959–968.
- T.M.V. Ngo, T.H. Truong, T.H.L. Nguyen, T.T.A. Duong,
T.H. Vu, T.T.T. Nguyen, T.D. Pham, Surface modified laterite
soil with an anionic surfactant for the removal of a cationic dye
(crystal violet) from an aqueous solution, Water Air Soil Pollut.,
231 (2020) 285, doi: 10.1007/s11270-020-04647-2.
- W. Wei, L. Yang, W.H. Zhong, S.Y. Li, J. Cui, Z.G. Wei, Fast
removal of methylene blue from aqueous solution by adsorption
onto poorly crystalline hydroxyapatite nanoparticles, Dig. J.
Nanomater. Biostruct., 10 (2015) 1343–1363.
- P. Zhang, D. O’Connor, Y. Wang, L. Jiang, T. Xia, L. Wang,
D.C.W. Tsang, Y.S. Ok, D. Hou, A green biochar/iron oxide
composite for methylene blue removal, J. Hazard. Mater.,
384 (2020) 121286, doi:10.1016/j.jhazmat.2019.121286.
- O.S. Omer, M.A. Hussein, B.H.M. Hussein, A. Mgaidi,
Adsorption thermodynamics of cationic dyes (methylene blue
and crystal violet) to a natural clay mineral from aqueous
solution between 293.15 and 323.15 K, Arabian J. Chem.,
11 (2018) 615–623.
- P.P. Kyi, J.O. Quansah, C.G. Lee, J.-K. Moon, S.-J. Park, The
removal of crystal violet from textile wastewater using
palm kernel shell-derived biochar, Appl. Sci., 10 (2020) 2251,
doi: 10.3390/app10072251.
- Z.U. Zango, S.S. Imam, Evaluation of microcrystalline cellulose
from groundnut shell for the removal of crystal violet and
methylene blue, Nanosci. Nanotechnol., 8 (2018) 1–6.
- M. Sarabadan, H. Bashiri, S.M. Mousavi, Removal of crystal
violet dye by an efficient and low cost adsorbent: modeling,
kinetic, equilibrium and thermodynamic studies, Korean
J. Chem. Eng., 36 (2019) 1575–1586.
- D. Pathania, S. Sharma, P. Singh, Removal of methylene blue by
adsorption onto activated carbon developed from Ficus carica bast, Arabian J. Chem., 10 (2017) S1445–S1451.
- Q. Li, Y. Zhao, L. Wang, W. Aiqin, Adsorption characteristics of
methylene blue onto the
N-succinyl-chitosan-g-polyacrylamide/attapulgite composite, Korean J. Chem. Eng., 28 (2011)
1658–1664.
- D. Ghosh, K.G. Bhattacharyya, Adsorption of methylene blue
on kaolinite, Appl. Clay Sci., 20 (2002) 295–300.
- I. Anastopoulos, A. Bhatnagar, B.H. Hameed, Y.S. Ok,
M. Omirou, A review on waste-derived adsorbents from sugar
industry for pollutant removal in water and wastewater, J. Mol.
Liq., 240 (2017) 179–188.
- S. Chowdhury, S. Chakraborty, P.D. Saha, Removal of crystal
violet from aqueous solution by adsorption onto eggshells:
equilibrium, kinetics, thermodynamics and artificial neural
network modeling, Waste Biomass Valorization, 4 (2013)
655–664.
- A.R. Abbasi, M. Karimi, K. Daasbjerg, Efficient removal of crystal
violet and methylene blue from wastewater by ultrasound
nanoparticles Cu-MOF in comparison with mechanosynthesis
method, Ultrason. Sonochem., 37 (2017) 182–191.
- H.A. Ahsaine, Z. Anfar, M. Zbair, M. Ezahri, N. El Alem,
Adsorptive removal of methylene blue and crystal violet onto
micro-mesoporous Zr3O/activated carbon composite: a joint
experimental and statistical modeling considerations, J. Chem.,
2018 (2018) 1–14, doi: 10.1155/2018/6982014.
- T. Aysu, M.M. Küçük, Removal of crystal violet and methylene
blue from aqueous solutions by activated carbon prepared
from Ferula orientalis, Int. J. Environ. Sci. Technol., 12 (2015)
2273–2284.
- S. Al-Shahrani, Phenomena of removal of crystal violet from
wastewater using Khulays natural bentonite, J. Chem., 1 (2020),
doi: 10.1155/2020/4607657.
- K. Mohanty, J.T. Naidu, B.C. Meikap, M.N. Biswas, Removal of
crystal violet from wastewater by activated carbons prepared
from rice husk, Ind. Eng. Chem. Res., 45 (2006) 5165–5171.
- L.S. Maia, A.I.C. da Silva, E.S. Carneiro, F.M. Monticelli,
F.R. Pinhati, D.R. Mulinari, Activated carbon from palm fibres
used as an adsorbent for methylene blue removal, J. Polym.
Environ., 29 (2021) 1162–1175.
- A. Adak, M. Bandyopadhyay, A. Pal, Removal of crystal violet
dye from wastewater by surfactant-modified alumina, Sep.
Purif. Technol., 44 (2005) 139–144.
- A. Awadallah-F, S.A. Al-Muhtaseb, Removal of crystal violet
from wastewater using resorcinol-formaldehyde carbon
xerogels, Sep. Sci. Technol., 51 (2016) 403–415.
- T.K. Hussein, N.A. Jasim, Removal of crystal violet and
methylene blue from synthetic industrial wastewater using
fennel seed as an adsorbent, J. Eng. Sci.Technol., 14 (2019)
2947–2963.
- Q. Bai, Q. Xiong, C. Li, Y. Shen, H. Uyama, Hierarchical porous
cellulose/activated carbon composite monolith for efficient
adsorption of dyes, Cellulose, 24 (2017) 4275–4289.
- M.R. Malekbala, M.A. Khan, S. Hosseini, L.C. Abdullah,
T.S.Y. Choong, Adsorption/desorption of cationic dye on
surfactant modified mesoporous carbon coated monolith:
equilibrium, kinetic and thermodynamic studies, J. Ind. Eng.
Chem., 21 (2015) 369–377.
- X. He, K.B. Male, P.N. Nesterenko, D. Brabazon, B. Paull,
J.H.T. Luong, Adsorption and desorption of methylene blue on
porous carbon monoliths and nanocrystalline cellulose, ACS
Appl. Mater. Interfaces, 5 (2013) 8796–8804.
- M. Sharma, S. Hazra, S. Basu, Kinetic and isotherm studies
on adsorption of toxic pollutants using porous ZnO@SiO2
monolith, J. Colloid Interface Sci., 504 (2017) 669–679.
- S.A. El-Safty, A. Shahat, M.R. Awual, Efficient adsorbents of
nanoporous aluminosilicate monoliths for organic dyes from
aqueous solution, J. Colloid Interface Sci., 359 (2011) 9–18.
- E. Ayranci, O. Duman, In-situ UV-Visible spectroscopic study
on the adsorption of some dyes onto activated carbon cloth,
Sep. Sci. Technol., 44 (2009) 3735–3752.
- O. Duman, S. Tunç, T.G. Polat, Adsorptive removal of
triarylmethane dye (Basic red 9) from aqueous solution by
sepiolite as effective and low-cost adsorbent, Microporous
Mesoporous Mater., 210 (2015) 176–184.
- O. Duman, S. Tunç, T.G. Polat, B.K. Bozoğlan, Synthesis of magnetic
oxidized multiwalled carbon
nanotube-κ-carrageenan-Fe3O4
nanocomposite adsorbent and its application in cationic methylene
blue dye adsorption, Carbohydr. Polym., 147 (2016) 79–88.
- O. Duman, T.G. Polat, C.Ö. Diker, S. Tunç, Agar/κ-carrageenan
composite hydrogel adsorbent for the removal of methylene
blue from water, Int. J. Biol. Macromol., 160 (2020) 823–835.
- A.A. Al-Massaedh, F.I. Khalili, Removal of thorium(IV) ions
from aqueous solution by polyacrylamide-based monoliths:
equilibrium, kinetic and thermodynamic studies, J. Radioanal.
Nucl. Chem., 327 (2021) 1201–1217.
- S. Xie, F. Svec, J.M.J. Fréchet, Porous polymer monoliths:
preparation of sorbent materials with high-surface areas and
controlled surface chemistry for high-throughput, online, solidphase
extraction of polar organic compounds, Chem. Mater.,
10 (1998) 4072–4078.
- G. Guiochon, Monolithic columns in high-performance liquid
chromatography, J. Chromatogr. A, 1168 (2007) 101–168.
- Y. Hu, S. Giret, R. Meinusch, J. Han, F-G. Fontaine, F. Kleitz,
D. Dominic Lariviere, Selective separation and preconcentration
of Th(IV) using organo-functionalized, hierarchically porous
silica monoliths, J. Mater. Chem. A, 7 (2019) 289–302.
- A.A. Al-Massaedh, F.I. Khalili, Removal of heavy metal ions
from aqueous solution by anionic polyacrylamide-based
monolith: equilibrium, kinetic and thermodynamic studies,
Desal. Water Treat., 228 (2021) 297–311.
- M. Sharma, J. Singh, S. Hazra, S. Basu, Remediation of heavy
metal ions using hierarchically porous carbon monolith
synthesized via nanocasting method, J. Environ. Chem. Eng.,
6 (2018) 2829–2836.
- A.A. Al-Massaedh, U. Pyell, Mixed-mode acrylamide-based
continuous beds bearing tert-butyl groups for capillary
electrochromatography synthesized via complexation of
N-tert-butylacrylamide with a water-soluble cyclodextrin. Part I:
retention properties, J. Chromatogr. A, 1477 (2016) 114–126.
- L. Uzun, D. Türkmen, E. Yilmaz, S. Bektas, A. Denizli, Cysteine
functionalized poly(hydroxyethyl methacrylate) monolith for
heavy metal removal, Colloids Surf., A, 330 (2008) 161–167.
- I. Nischang, T.J. Causon, Porous polymer monoliths: from their
fundamental structure to analytical engineering applications,
TrAC, Trends Anal. Chem., 75 (2016) 108–117.
- R.J. Groarke, D. Brabazon, Methacrylate polymer monoliths for
separation applications, Materials, 9 (2016) 446–479.
- S. Wang, R. Zhang, Column preconcentration of lead in aqueous
solution with macroporous epoxy resin-based polymer
monolithic matrix, Anal. Chim. Acta, 575 (2006) 166–171.
- A.A. Al-Massaedh, M. Schmidt, U. Pyell, U.M. Reinscheid,
Elucidation of the enantiodiscrimination properties of a
nonracemic chiral alignment medium through gel-based
capillary electrochromatography: separation of the mefloquine
stereoisomers, ChemistryOpen, 5 (2016) 455–459.
- S. Chakraborty, S. Chowdhury, P.D. Saha, Adsorption of crystal
violet from aqueous solution onto NaOH-modified rice husk,
Carbohydr. Polym., 86 (2011) 1533–1541.
- N. Laskar, U. Kumar, Adsorption of crystal violet from
wastewater by modified bambusa tulda, KSCE J. Civ. Eng.,
22 (2018) 2755–2763.
- E. Igberase, P. Osifo, A. Ofomaja, The adsorption of Pb, Zn, Cu,
Ni, and Cd by modified ligand in a single component aqueous
solution: equilibrium, kinetic, thermodynamic, and desorption
studies, Int. J. Anal. Chem., 2017 (2017) 1–15.
- D. Robati, Pseudo-second-order kinetic equations for modeling
adsorption systems for removal of ammonium ions using
multi-walled carbon nanotube, J. Nanostruct. Chem., 3 (2013)
55, doi:10.1186/2193–8865–3-55.
- M.T. Ghaneian, A. Bhatnagar, M.H. Ehrampoush, M. Amrollahi,
B. Jamshidi, M. Dehvari, M. Taghavi, Biosorption of hexavalent
chromium from aqueous solution onto pomegranate seeds:
kinetic modeling studies, Int. J. Environ. Sci. Technol., 14 (2017)
331–340.
- Y.S. Ho, G. McKay, Pseudo-second-order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and
interpretation of adsorption isotherms, J. Chem., 2017 (2017),
doi: 10.1155/2017/3039817.
- S. Liu, Cooperative adsorption on solid surfaces, J. Colloid
Interface Sci., 450 (2015) 224–238.
- C.H. Giles, D. Smith, A general treatemnt and classification
of the solute adsorption isotherm, J. Colloid Interface Sci.,
47 (1974) 755–765.
- T.S. Anirudhan, S.R. Rejeena, Thorium(IV) removal
and recovery from aqueous solutions using
tannin-modified
poly(glycidylmethacrylate)-grafted zirconium oxide densified
cellulose, Ind. Eng. Chem. Res., 50 (2011) 13288–13298.
- M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and
interpretation of adsorption isotherm models:
a review,
J. Hazard. Mater., 393 (2020) 122383, doi: 10.1016/j.jhazmat.2020.122383.
- M. Alaqarbeh, F.I. Khalili, O. Kanoun, Manganese ferrite
(MnFe2O4) as potential nanosorbent for adsorption of
uranium(VI) and thorium(IV), J. Radioanal. Nucl. Chem.,
323 (2020) 515–537.
- I.A.W. Tan, A.l. Ahmad, B.H. Hameed, Adsorption of basic
dye on high-surface-area activated carbon prepared from
coconut husk: equilibrium, kinetic and thermodynamic studies,
J. Hazard. Mater., 154 (2008) 337–346.
- O. Hamdaoui, E. Naffrechoux, Modeling of adsorption
isotherms of phenol and chlorophenols onto granular activated
carbon. Part I. Two-parameter models and equations allowing
determination of thermodynamic parameters, J. Hazard. Mater.,
147 (2007) 381–394.
- G. Limousin, J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthes,
M. Krimissa, Sorption isotherms: a review on physical bases,
modeling and measurement, Appl. Geochem., 22 (2007)
249–275.
- G. Sharma, Mu. Naushad, Adsorptive removal of noxious
cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: isotherm and kinetic modelling,
J. Mol. Liq., 310 (2020) 113025, doi:10.1016/j.molliq.2020.113025.
- E.E. Jasper, V.O. Ajibola, J.C. Onwuka, Nonlinear regression
analysis of the sorption of crystal violet and methylene
blue from aqueous solutions onto an agro-waste derived
activated carbon, Appl. Water Sci., 10 (2020)132, doi: 10.1007/s13201-020-01218-y.
- D.C.W. Tsang, J. Hu, M.Y. Liu, W. Zhang, K.C.K. Lai,
I.M.C. Lo, Activated carbon produced from waste wood pallets:
adsorption of three classes of dyes, Water Air Soil Pollut.,
184 (2007) 141–155.
- U.F. Alkaram, A.A. Mukhlis, A.H. Al-Dujaili, The removal of
phenol from aqueous solutions by adsorption using surfactantmodified
bentonite and kaolinite, J. Hazard. Mater., 169 (2009)
324–332.
- O. Duman, S. Tunç, B.K. Bozoğlan, T.G. Polat, Removal
of triphenylmethane and reactive azo dyes from aqueous
solution by magnetic carbon nanotube-κ-carrageenan-Fe3O4
nanocomposite, J. Alloys Compd., 687 (2016) 370–383.
- O. Duman, S. Tunç, T.G. Polat, Determination of adsorptive
properties of expanded vermiculite for the removal of
C. I. Basic Red 9 from aqueous solution: kinetic, isotherm and
thermodynamic studies, Appl. Clay Sci., 109–110 (2015) 22–32.