References
- M.S.S. Abujazar, S. Fatihah, A.E. Kabeel, S. Sharil, S.S. Abu Amr,
Evaluation quality of desalinated water derived from inclined
copper-stepped solar still, Desal. Water Treat., 131 (2018)
83–95.
- Y. Wu, Z. Zhang, P. He, H. Ren, N. Wei, F. Zhang, H. Cheng,
Q. Wang, Membrane fouling in a hybrid process of enhanced
coagulation at high coagulant dosage and cross-flow
ultrafiltration for deinking wastewater tertiary treatment,
J. Cleaner Prod., 230 (2019) 1027–1035.
- K.E. Lee, N. Morad, T.T. Teng, B.T. Poh, Development,
characterization and the application of hybrid materials in
coagulation/flocculation of wastewater: a review, Chem. Eng. J.,
203 (2012) 370–386.
- K.E. Lee, M.M. Hanafiah, A.A. Halim, M.H. Mahmud, Primary
treatment of dye wastewater using Aloe vera-aided aluminium
and magnesium hybrid coagulants, Procedia Environ. Sci.,
30 (2015) 56–61.
- Y. Zou, X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat,
X. Wang, Environmental remediation and application of
nanoscale zero-valent iron and its composites for the removal
of heavy metal ions: a review, Environ. Sci. Technol., 50 (2016)
7290–7304.
- O.S. Amuda, A.O. Ibrahim, Industrial wastewater treatment
using natural material as adsorbent, Afr. J. Biotechnol., 5 (2006)
1483–1487.
- M.A. Barakat, New trends in removing heavy metals from
industrial wastewater, Arabian J. Chem., 4 (2011) 361–377.
- N. Meunier, P. Drogui, C. Montané, R. Hausler, G. Mercier,
J.-F. Blais, Comparison between electrocoagulation and
chemical precipitation for metals removal from acidic soil
leachate, J. Hazard. Mater., 137 (2006) 581–590.
- G. Wu, Z. Li, Y. Huang, F. Zan, J. Dai, J. Yao, B. Yang, G. Chen,
L. Lei, Electrochemically assisted sulfate reduction autotrophic
denitrification nitrification integrated (e-SANI®) process for
high-strength ammonium industrial wastewater treatment,
Chem. Eng. J., 381 (2020) 122707, doi: 10.1016/j.cej.2019.122707.
- M. Kumari, S.K. Gupta, A novel process of adsorption cum
enhanced coagulation-flocculation spiked with magnetic
nanoadsorbents for the removal of aromatic and hydrophobic
fraction of natural organic matter along with turbidity
from drinking water, J. Cleaner Prod., 244 (2020) 118899,
doi:10.1016/j.jclepro.2019.118899.
- A. Aghababai Beni, A. Esmaeili, Y. Behjat, Invent of a
simultaneous adsorption and separation process based on
dynamic membrane for treatment Zn(II), Ni(II) and, Co(II)
industrial wastewater, Arabian J. Chem., 14 (2021) 103231,
doi: 10.1016/j.arabjc.2021.103231.
- P.J.M. Martins, P.M. Reis, R.C. Martins, L.M. Gando-Ferreira,
R.M. Quinta-Ferreira, Iron recovery from the Fenton’s treatment
of winery effluent using an ion-exchange resin, J. Mol. Liq.,
242 (2017) 505–511.
- M.A.N. Camacho, A.I.G. López, A. Martinez-Ferez,
J.M. Ochando-Pulido, Increasing large-scale feasibility of twophase
olive-oil washing wastewater treatment and phenolic
fraction recovery with novel ion exchange resins, Chem. Eng.
Process. Process Intensif., 164 (2021) 108416, doi: 10.1016/j.cep.2021.108416.
- G. Han, Y. Du, Y. Huang, S. Yang, W. Wang, S. Su, B. Liu,
Efficient removal of hazardous benzohydroxamic acid (BHA)
contaminants from the industrial beneficiation wastewaters
by facile precipitation flotation process, Sep. Purif. Technol.,
279 (2021) 119718, doi: 10.1016/j.seppur.2021.119718.
- P. Ostermeyer, L. Bonin, K. Folens, F. Verbruggen,
C. García-Timermans, K. Verbeken, K. Rabaey, T. Hennebel,
Effect of speciation and composition on the kinetics and
precipitation of arsenic sulfide from industrial metallurgical
wastewater, J. Hazard. Mater., 409 (2021) 124418, doi: 10.1016/j.
jhazmat.2020.124418.
- Y. Jiao, L. Liu, Q. Zhang, M. Zhou, Y. Zhang, Treatment of
reverse osmosis concentrate from industrial coal wastewater
using an electro-peroxone process with a natural air diffusion
electrode, Sep. Purif. Technol., 279 (2021) 119667, doi: 10.1016/j.
seppur.2021.119667.
- T.S. de A. Lopes, R. Heßler, C. Bohner, G.B. Athayde Junior,
R.F. de Sena, Pesticides removal from industrial wastewater
by a membrane bioreactor and post-treatment with either
activated carbon, reverse osmosis or ozonation, J. Environ.
Chem. Eng., 8 (2020) 104538, doi: 10.1016/j.jece.2020.
104538.
- M.S.S. Abujazar, S.U. Karaağaç, S.S. Abu Amr, M.Y.D. Alazaiza,
M.J. Bashir, Recent advancement in the application of hybrid
coagulants in coagulation-flocculation of wastewater: a
review, J. Cleaner Prod., 345 (2022) 131133, doi: 10.1016/j.jclepro.2022.131133.
- M.I. Ejimofor, I.G. Ezemagu, M.C. Menkiti, Biogas production
using coagulation sludge obtained from paint wastewater
decontamination: characterization and anaerobic digestion
kinetics, Curr. Res. Green Sustainable Chem., 3 (2020) 100024,
doi: 10.1016/j.crgsc.2020.100024.
- Z.Z. Abidin, N. Ismail, R. Yunus, I.S. Ahamad, A. Idris,
A preliminary study on Jatropha curcas as coagulant in
wastewater treatment, Environ. Technol., 32 (2011) 971–977.
- K.P.Y. Shak, T.Y. Wu, Coagulation–flocculation treatment
of high-strength agro-industrial wastewater using natural
Cassia obtusifolia seed gum: treatment efficiencies and flocs
characterization, Chem. Eng. J., 256 (2014) 293–305.
- A.J. Hargreaves, P. Vale, J. Whelan, L. Alibardi, C. Constantino,
G. Dotro, E. Cartmell, P. Campo, Coagulation–flocculation
process with metal salts, synthetic polymers and biopolymers
for the removal of trace metals (Cu, Pb, Ni, Zn) from municipal
wastewater, Clean – Technol. Environ. Policy, 20 (2018)
393–402.
- P. Vega Andrade, C.F. Palanca, M.A.C. de Oliveira, C.Y.K. Ito,
A.G. dos Reis, Use of Moringa oleifera seed as a natural coagulant
in domestic wastewater tertiary treatment: physicochemical,
cytotoxicity and bacterial load evaluation, J. Water Process Eng.,
40 (2021) 101859, doi: 10.1016/j.jwpe.2020.101859.
- H. Guven, R.K. Dereli, H. Ozgun, M.E. Ersahin, I. Ozturk,
Towards sustainable and energy efficient municipal wastewater
treatment by up-concentration of organics, Prog. Energy
Combust. Sci., 70 (2019) 145–168.
- H. Patel, R.T. Vashi, Comparison of naturally prepared
coagulants for removal of COD and color from textile
wastewater, Global Nest J., 15 (2013) 522–528.
- L. Gayathri, Treatment of dairy wastewater by using natural
coagulants, Int. Res. J. Eng. Sci., 3 (2017) 81–85.
- M. Dehghani, M.H. Alizadeh, The effects of the natural
coagulant Moringa oleifera and alum in wastewater treatment at
the Bandar Abbas Oil Refinery, Environ. Health Eng. Manage.,
3 (2016) 225–230.
- G.L. Muniz, A.C. Borges, T.C.F. da Silva, Performance of natural
coagulants obtained from agro-industrial wastes in dairy
wastewater treatment using dissolved air flotation, J. Water
Process Eng., 37 (2020) 101453, doi: 10.1016/j.jwpe.2020.101453.
- M.B. Fard, D. Hamidi, K. Yetilmezsoy, J. Alavi, F. Hosseinpour,
Utilization of Alyssum mucilage as a natural coagulant in oilysaline
wastewater treatment, J. Water Process Eng., 40 (2021)
101763, doi:10.1016/j.jwpe.2020.101763.
- W.L. Ang, A.W. Mohammad, State of the art and
sustainability of natural coagulants in water and wastewater
treatment, J. Cleaner Prod., 262 (2020) 121267, doi: 10.1016/j.jclepro.2020.121267.
- D. Shruthi Keerthi, M. Mukunda Vani, Optimization studies on
decolorization of textile wastewater using natural coagulants,
Mater. Today: Proc., 57 (2022) 1546–1552.
- T.A. Kurniawan, G.Y.S. Chan, W.-H. Lo, S. Babel, Physico–chemical treatment techniques for wastewater laden with heavy
metals, Chem. Eng. J., 118 (2006) 83–98.
- J. del Real-Olvera, E. Rustrian-Portilla, E. Houbron, F.J. Landa-Huerta, Adsorption of organic pollutants from slaughterhouse
wastewater using powder of Moringa oleifera seeds as a natural
coagulant, Desal. Water Treat., 57 (2016) 9971–9981.
- A. Hariz Amran, N. Syamimi Zaidi, K. Muda, L. Wai Loan,
Effectiveness of natural coagulant in coagulation process:
a review, Int. J. Eng. Technol., 7 (2018) 34, doi: 10.14419/ijet.
v7i3.9.15269.
- A. Ahmad, S.R.S. Abdullah, H.A. Hasan, A.R. Othman,
N. ’Izzati Ismail, Plant-based versus metal-based coagulants
in aquaculture wastewater treatment: effect of mass ratio
and settling time, J. Water Process Eng., 43 (2021) 102269,
doi: 10.1016/j.jwpe.2021.102269.
- S. Veli, A. Arslan, M. Isgoren, D. Bingol, D. Demiral,
Experimental design approach to COD and color removal
of landfill leachate by the electrooxidation process, Environ.
Challenges, 5 (2021) 100369, doi:10.1016/j.envc.2021.100369.
- H. Salehizadeh, S.A. Shojaosadati, Extracellular biopolymeric
flocculants Recent trends and biotechnological importance,
Biotechnol. Adv., 19 (2001) 371–385.
- F.V. Adams, A.F. Mulaba-Bafubiandi, Application of rice hull
ash for turbidity removal from water, Phys. Chem. Earth.,
72–75 (2014) 73–76.
- N. He, Y. Li, J. Chen, S. Lun, Identification of a novel bioflocculant
from a newly isolated Corynebacterium glutamicum, Biochem.
Eng. J., 11 (2002) 137–148.
- S. Vishali, R. Karthikeyan, Cactus opuntia (ficus - indica): an ecofriendly
alternative coagulant in the treatment of paint effluent,
Desal. Water Treat., 56 (2015) 1489–1497.
- B. Kakoi, J.W. Kaluli, P. Ndiba, G. Thiong’o, Banana pith as a
natural coagulant for polluted river water, Ecol. Eng., 95 (2016)
699–705.
- B. Ramavandi, S. Farjadfard, Removal of chemical oxygen
demand from textile wastewater using a natural coagulant,
Korean J. Chem. Eng., 31 (2014) 81–87.
- M. Besharati Fard, D. Hamidi, J. Alavi, R. Jamshidian,
A. Pendashteh, S.A. Mirbagheri, Saline oily wastewater
treatment using Lallemantia mucilage as a natural coagulant:
kinetic study, process optimization, and modeling, Ind. Crops
Prod., 163 (2021) 113326, doi: 10.1016/j.indcrop.2021.113326.
- T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. Shi,
J.I. Yeh, J.I. Zink, A.E. Nel, Comparison of the mechanism of
toxicity of zinc oxide and cerium oxide nanoparticles based on
dissolution and oxidative stress properties, ACS Nano, 2 (2008)
2121–2134.
- G. Palma, Removal of metal ions by modified Pinus radiata
bark and tannins from water solutions, Water Res., 37 (2003)
4974–4980.
- P. Scho, D.M. Mbugua, A.N. Pell, Analysis of condensed
tannins: a review, Anim. Feed Sci. Technol., 91 (2001) 21–40.
- A.S. Mangrich, M.E. Doumer, A.S. Mallmannn, C.R. Wolf,
Green chemistry in water treatment: use of coagulant derived
from acacia mearnsii tannin extracts, Rev. Virtual Química,
6 (2014) 2–15.
- T.J. Kim, J.L. Silva, M.K. Kim, Y.S. Jung, Enhanced antioxidant
capacity and antimicrobial activity of tannic acid by thermal
processing, Food Chem., 118 (2010) 740–746.
- B. Zhang, H. Su, X. Gu, X. Huang, H. Wang, Effect of structure
and charge of polysaccharide flocculants on their flocculation
performance for bentonite suspensions, Colloids Surf., A,
436 (2013) 443–449.
- K. Okaiyeto, U. Nwodo, L. Mabinya, A. Okoh, Characterization
of a bioflocculant produced by a consortium of Halomonas sp. Okoh and Micrococcus sp. Leo, Int. J. Environ. Res. Public
Health, 10 (2013) 5097–5110.
- L. Wang, Z. Feng, X. Wang, X. Wang, X. Zhang, DEGseq: an
R package for identifying differentially expressed genes from
RNA-seq data, Bioinformatics, 26 (2010) 136–138.
- D. Zhang, Z. Hou, Z. Liu, T. Wang, Experimental research on
Phanerochaete chrysosporium as coal microbial flocculant, Int. J.
Min. Sci. Technol., 23 (2013) 521–524.
- U.U. Nwodo, A.I. Okoh, Characterization and flocculation
properties of biopolymeric flocculant (glycosaminoglycan)
produced by Cellulomonas sp. Okoh, J. Appl. Microbiol.,
114 (2013) 1325–1337.