References

  1. W.S. Chai, J.Y. Cheun, P. Senthil Kumar, M. Mubashir, Z. Majeed, F. Banat, S.-H. Ho, P.L. Show, A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application, J. Cleaner Prod., 296 (2021) 126589, doi: 10.1016/j.jclepro.2021.126589.
  2. A.A. Adeyemi, Z.O. Ojekunle, Concentrations and health risk assessment of industrial heavy metals pollution in groundwater in Ogun state, Nigeria, Sci. Afr., 11 (2021) e00666, doi: 10.1016/j.sciaf.2020.e00666.
  3. D. Paul, Research on heavy metal pollution of river Ganga: a review, Ann. Agrar. Sci., 15 (2017) 278–286.
  4. P. Lazor, J. Tomáš, T. Tóth, J. Tóth, S. Čéryová, Monitoring of air pollution and atmospheric deposition of heavy metals by analysis of honey, J. Microbiol. Biotechnol. Food Sci., 1 (2012) 522–533.
  5. T.A. Saleh, Trends in the sample preparation and analysis of nanomaterials as environmental contaminants, Trends Environ. Anal. Chem., 28 (2020) e00101, doi: 10.1016/j.teac.2020.e00101.
  6. H. Sadegh, G.A.M. Ali, Chapter 51 – Potential Applications of Nanomaterials in Wastewater Treatment: Nanoadsorbents Performance, In: Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials, IGI Global, Hershey, PA, 2018, pp. 1230–1240.
  7. T.A. Saleh, Protocols for synthesis of nanomaterials, polymers, and green materials as adsorbents for water treatment technologies, Environ. Technol. Innovation, 24 (2021) 101821, doi: 10.1016/j.eti.2021.101821.
  8. A.T. Hoang, X.L. Bui, X.D. Pham, A novel investigation of oil and heavy metal adsorption capacity from as-fabricated adsorbent based on agricultural by-product and porous polymer, Energy Sources Part A, 40 (2018) 929–939.
  9. T.A. Saleh, Nanomaterials: classification, properties, and environmental toxicities, Environ. Technol. Innovation, 20 (2020) 101067, doi: 10.1016/j.eti.2020.101067.
  10. K. Palanisamy, A. Jeyaseelan, K. Murugesan, S.B. Palanisamy, Biopolymer Technologies for Environmental Applications, K. Gothandam, S. Ranjan, N. Dasgupta, E. Lichtfouse, Eds., Nanoscience and Biotechnology for Environmental Applications. Environmental Chemistry for a Sustainable World, Springer, Cham, 2019, pp. 55–83.
  11. N. Bhullar, K. Kumari, D. Sud, A biopolymer-based composite hydrogel for rhodamine 6G dye removal: its synthesis, adsorption isotherms and kinetics, Iran. Polym. J., 27 (2018) 527–535.
  12. U. Malayoglu, Removal of heavy metals by biopolymer (chitosan)/nanoclay composites, Sep. Sci. Technol., 53 (2018) 2741–2749.
  13. A.B.D. Nandiyanto, R. Oktiani, R. Ragadhita, How to read and interpret FTIR spectroscope of organic material, Indones. J. Sci. Technol., 4 (2019) 97–118.
  14. N. Tahir, H.N. Bhatti, M. Iqbal, S. Noreen, Biopolymers composites with peanut hull waste biomass and application for crystal violet adsorption, Int. J. Biol. Macromol., 94 (2017) 210–220.
  15. B. Maazinejad, O. Mohammadnia, G.A.M. Ali, A.S.H. Makhlouf, M.N. Nadagouda, M. Sillanpää, A.M. Asiri,
    S. Agarwal, V.K. Gupta, H. Sadegh, Taguchi L9 (34) orthogonal array study based on methylene blue removal by single-walled carbon nanotubes-amine: adsorption optimization using the experimental design method, kinetics, equilibrium and thermodynamics, J. Mol. Liq., 298 (2020) 112001, doi:10.1016/j.molliq.2019.112001.
  16. M.A. Khan, Momina, M.R. Siddiqui, M. Otero, S.A. Alshareef, M. Rafatullah, Removal of Rhodamine B from water using a solvent impregnated polymeric Dowex 5WX8 resin: statistical optimization and batch adsorption studies, Polymers, 12 (2020) 500, doi: 10.3390/polym12020500.
  17. M. Sarstedt, J.F. Hair Jr, C. Nitzl, C.M. Ringle, M.C. Howard, Beyond a tandem analysis of SEM and PROCESS: use of PLSSEM for mediation analyses, Int. J. Market Res., 62 (2020) 288–299.
  18. A. Munajad, C. Subroto, Suwarno, Fourier transform infrared (FTIR) spectroscopy analysis of transformer paper in mineral oil-paper composite insulation under accelerated thermal aging, Energies, 11 (2018) 364, doi: 10.3390/en11020364.
  19. T.A. Saleh, Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon, J. Cleaner Prod., 172 (2018) 2123–2132.
  20. T.A. Saleh, Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica-multiwall carbon nanotubes, Environ. Sci. Pollut. Res., 22 (2015) 16721–16731.
  21. T.A. Saleh, The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4, Appl. Surf. Sci., 257 (2011) 7746–7751.
  22. A. Kenđel, B. Zimmermann, Chemical analysis of pollen by FT-Raman and FTIR spectroscopies, Front. Plant Sci., 11 (2020) 352, doi: 10.3389/fpls.2020.00352.
  23. S. Praveenkumar, G. Sankarasubramanian, S. Sindhu, Strength, permeability and microstructure characterization of pulverized bagasse ash in cement mortars, Constr. Build. Mater., 238 (2020) 117691, doi:10.1016/j.conbuildmat.2019.117691.
  24. A. Fareed, S.B.A. Zaidi, N. Ahmad, I. Hafeez, A. Ali, M.F. Ahmad, Use of agricultural waste ashes in asphalt binder and mixture: a sustainable solution to waste management, Constr. Build. Mater., 259 (2020) 120575, doi: 10.1016/j. conbuildmat.2020.120575.
  25. J.F. Hair Jr., M.C. Howard, C. Nitzl, Assessing measurement model quality in PLS-SEM using confirmatory composite analysis, J. Bus. Res., 109 (2020) 101–110.
  26. R.L. Moore, J.P. Mann, A. Montoya, B.S. Haynes, In situ synchrotron XRD analysis of the kinetics of spodumene phase transitions, Phys. Chem. Chem. Phys., 20 (2018) 10753–10761.
  27. P. Mohanty, S. Nanda, K.K. Pant, S. Naik, J.A. Kozinski, A.K. Dalai, Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate, J. Anal. Appl. Pyrolysis, 104 (2013) 485–493.
  28. D. Chen, X. Wang, X. Wang, K. Feng, J. Su, J. Dong, The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil, Sci. Total Environ., 714 (2020) 136550, doi: 10.1016/j. scitotenv.2020.136550.
  29. L. Wilkinson, Revising the Pareto chart, Am. Stat., 60 (2006) 332–334.
  30. T.A. Saleh, S.O. Adio, M. Asif, H. Dafalla, Statistical analysis of phenols adsorption on diethylenetriamine-modified activated carbon, J. Cleaner Prod., 182 (2018) 960–968.
  31. A. Sarı, T.A. Saleh, M. Tuzen, Development and characterization of polymer-modified vermiculite composite as novel highlyefficient adsorbent for water treatment, Surf. Interfaces, 27 (2021) 101504, doi:10.1016/j.surfin.2021.101504.
  32. T.A. Saleh, A. Sarı, M. Tuzen, Development and characterization of bentonite-gum Arabic composite as novel highly-efficient adsorbent to remove thorium ions from aqueous media, Cellulose, 28 (2021) 10321–10333.
  33. T.A. Saleh, M. Tuzen, A. Sarı, Evaluation of poly(ethylene diamine-trimesoyl chloride)-modified diatomite as efficient adsorbent for removal of rhodamine b from wastewater samples, Environ. Sci. Pollut. Res., 28 (2021) 55655–55666.
  34. N.D. Dejene, M. Gopal, The hybrid Pareto chart and FMEA methodology to reduce various defects in injection molding process, Solid State Technol., 64 (2021) 3541–3555.