References
- J. Levinson, Malting-brewing: a changing sector, BIOS Int.,
5 (2002) 12–15.
- S. Ciancia, Micro-brewing: a new challenge for beer, BIOS Int.,
2 (2000) 4–10.
- M. de Oliveira Dias, Heineken brewing industry in Brazil, Int. J.
Manage. Technol. Eng., 8 (2018) 1304–1310.
- J. Conway, Beer Production Worldwide From 1998 to 2019.
Available at: https://www.statista.com/statistics/270275/worldwide-beer-production/ (Access: February 16, 2022).
- Products Eurostat News. Available at: https://ec.europa.eu/
eurostat/web/products-eurostat-news/-/edn-20210805-1/
(Access: February 16, 2022).
- A.C. Fărcaş, S.A. Socaci, E. Mudura, F.V. Dulf, D.C. Vodnar,
M. Tofană, L.C. Salanță, Exploitation of Brewing Industry Wastes
to Produce Functional Ingredients, M. Kanauchi, Ed., Brewing
Technology, InTechOpen, London, UK, 2017, pp. 137–156.
- V.K. Gupta, I. Ali, Environmental Water: Advances in
Treatment, Remediation and Recycling, Elsevier, Amsterdam,
The Netherlands, 2013, pp. 1–232.
- T. Kalak, J. Walczak, M. Ulewicz, Adsorptive recovery of
Cd(II) ions with the use of post-production waste generated
in the brewing industry, Energies, 14 (2021) 5543, doi: 10.3390/en14175543.
- The Act of 14 December 2012 on Waste (Polish Journal of Laws
2013, Item 21, As Amended).
- Regulation of the Minister of Environment of 11 May 2015
on Waste Recovery Outside of Installations and Devices
(Polish Journal of Laws From 2015, Item 796).
- D. Yu, Y. Sun, W. Wang, S.F. O’Keefe, A.P. Neilson, H. Feng,
Z. Wang, H. Huang, Recovery of protein hydrolysates from
brewer’s spent grain using enzyme and ultrasonication, Int. J.
Food Sci. Technol., 55 (2020) 357–368.
- O. Kanauchi, K. Mitsuyama, Y. Araki, Development of a
functional germinated barley foodstuff from brewer’s spent
grain for the treatment of ulcerative colitis, J. Am. Soc. Brew.
Chem., 59 (2001) 59–62.
- K. Kemppainen, K. Rommi, U. Holopainen, K. Kruus, Steam
explosion of brewer’s spent grain improves enzymatic
digestibility of carbohydrates and affects solubility and stability
of proteins, Appl. Biochem. Biotechnol., 180 (2016) 94–108.
- F. Carvalheiro, M.P. Esteves, J.C. Parajó, H. Pereira, F.M. Gírio,
Production of oligosaccharides by autohydrolysis of brewery’s
spent grain, Bioresour. Technol., 91 (2004) 93–100.
- O.P. Sobukola, J.M. Babajide, O. Ogunsade, Effect of brewers
spent grain addition and extrusion parameters on some
properties of extruded yam starch-based pasta, J. Food Process.
Preserv., 37 (2013) 734–743.
- J.P. Silva, S. Sousa, J. Rodrigues, H. Antunes, J.J. Porter,
I. Gonçalves, S. Ferreira-Dias, Adsorption of Acid orange
7 dye in aqueous solutions by spent brewery grains, Sep.
Purif. Technol., 40 (2004) 309–315.
- N.G.T. Meneses, S. Martins, J.A. Teixeira, S.I. Mussatto,
Influence of extraction solvents on the recovery of antioxidant
phenolic compounds from brewer’s spent grains, Sep. Purif.
Technol., 108 (2013) 152–158.
- S.I. Mussatto, I.C. Roberto, Chemical characterization and
liberation of pentose sugars from brewer’s spent grain, J. Chem.
Technol. Biotechnol., 81 (2006) 268–274.
- D.M. Waters, F. Jacob, J. Titze, E.K. Arendt, E. Zannini, Fibre,
protein and mineral fortification of wheat bread through
milled and fermented brewer’s spent grain enrichment,
Eur. Food Res. Technol., 235 (2012) 767–778.
- C. Xiros, E. Topakas, P. Katapodis, P. Christakopoulos,
Hydrolysis and fermentation of brewer’s spent grain by
Neurospora crassa, Bioresour. Technol., 99 (2008) 5427–5435.
- K.M. Khidzir, A. Noorlidah, P. Agamuthu, Brewery spent grain:
chemical characteristics and utilization as an enzyme substrate,
Malays. J. Sci., 29 (2019) 41–51.
- A.J. Jay, M.L. Parker, R. Faulks, F. Husband, P. Wilde, A.C. Smith,
C.B. Faulds, K.W. Waldron, A systematic micro-dissection of
brewers’ spent grain, J. Cereal Sci., 47 (2008) 357–364.
- J.A. Robertson, K.J.A. I’Anson, J. Treimo, C.B. Faulds,
T.F. Brocklehurst, V.G.H. Eijsink, K.W. Waldron, Profiling
brewers’ spent grain for composition and microbial ecology
at the site of production, LWT Food Sci. Technol., 43 (2010)
890–896.
- J. Treimo, B. Westereng, S.J. Horn, P. Forssell, J.A. Robertson,
C.B. Faulds, K.W. Waldron, J. Buchert, V.G.H. Eijsink, Enzymatic
solubilization of brewers’ spent grain by combined action of
carbohydrases and peptidases, J. Agric. Food Chem., 57 (2009)
3316–3324.
- Regulation of the Minister of Environment of 21 March 2006
on Waste Recovery Outside of Installations and Devices
(Polish Journal of Laws 06.49.356, Appendix 1).
- W. Czekała, A. Pawlisiak, Produkcja i wykorzystanie wysłodzin
browarnianych, Technika Rolnicza Ogrodnicza Leśna, 5 (2017)
23–25.
- M. Jackowski, Ł. Niedżwiecki, K. Jagiełło, O. Uchańska, A. Trusek,
Brewer’s spent grains—valuable beer industry by-product,
Biomolecules, 10 (2020) 1669, doi: 10.3390/biom10121669.
- S.S. Alquzweeni, R.S. Alkizwini, Removal of cadmium from
contaminated water using coated chicken bones with doublelayer
hydroxide (Mg/Fe-LDH), Water, 12 (2020) 2303, 1–13,
doi: 10.3390/w12082303.
- Ch.Ch. Nnaji, S.Ch. Emefu, Effect of particle-size on the
sorption of lead from water by different species of sawdust:
equilibrium
and kinetic study, Bioresources, 12 (2017)
4123–4145.
- Y. Tachibana, T. Kalak, M. Nogami, M. Tanaka, Combined use
of tannic acid-type organic composite adsorbents and ozone
for simultaneous removal of various kinds of radionuclides
in river water, Water Res., 182 (2020) 116032, doi: 10.1016/j.
watres.2020.116032.
- I.J. Alinnor, Adsorption of heavy metal ions from aqueous
solution by fly ash, Fuel, 86 (2007) 853–857.
- A. Hejna, M. Barczewski, K. Skórczewska, J. Szulc,
B. Chmielnicki, J. Korol, K. Formela, Sustainable upcycling
of brewers’ spent grain by thermo-mechanical treatment
in twin-screw extruder, J. Cleaner Prod., 285 (2021) 124839,
doi: 10.1016/j.jclepro.2020.124839.
- A.O. Balogun, F. Sotoudehnia, A.G Mcdonald, Thermokinetic,
spectroscopic study of brewer’s spent grains and
characterisation of their pyrolysis products, J. Anal. Appl.
Pyrolysis, 127 (2017) 8–16.
- M. Erdemoglu, M. Sarikaya, Effects of heavy metals and oxalate
on the zeta potential of magnetite, J. Colloid Interface Sci.,
300 (2006) 795–804.
- Ö. Demirbas, M. Alkan, M. Doğan, Y. Turhan, H. Namli,
P. Turan, Electrokinetic and adsorption properties of sepiolite
modified by 3-aminopropyltriethoxysilane, J. Hazard. Mater.,
149 (2007) 650–656.
- T. Kalak, Y. Tachibana, Removal of lithium and uranium
from seawater using fly ash and slag generated in the CFBC
technology, RSC Adv., 11 (2021) 21964–21978.
- E.A. López-Maldonado, M.T. Oropeza-Guzmán, Strategic
Design of Heavy Metals Removal Agents through Zeta Potential
Measurements, H. El-Din M. Saleh, R.F. Aglan, Eds., Heavy
Metals, InTechOpen, London, UK, 2018, pp. 53–65.
- M. Kosmulski, E. Mączka, The isoelectric point of an exotic
oxide: tellurium(IV) oxide, Molecules, 26 (2021) 3136,
doi: 10.3390/molecules26113136.
- A. Kołodziejczak-Radzimska, T. Jesionowski, Characterization
of amino-, epoxy- and carbonyl-functionalized halloysite
and its application in the immobilization of aminoacylase
from Aspergillus melleus, Physicochem. Probl. Miner. Process.,
55 (2019) 128–139.
- Y. Tao, Y. Han, W. Liu, L. Peng, Y. Wang, S. Kadam, P.L. Show, X. Ye,
Parametric and phenomenological studies about ultrasoundenhanced
biosorption of phenolics from fruit pomace extract by
waste yeast, Ultrason. Sonochem., 52 (2019) 193–204.
- F.T.V. Rubio, G.M. Maciel, M.V. Silva, V.G. Correa, R.M. Peralta,
C.W.I. Haminiuk, Enrichment of waste yeast with bioactive
compounds from grape pomace as an innovative and emerging
technology: kinetics, isotherms and bioaccessibility, Innovative
Food Sci. Emerg. Technol., 45 (2018) 18–28.
- E. Ferraz, J. Coroado, J. Gamelas, J. Silva, F. Rocha, A. Velosa,
Spent brewery grains for improvement of thermal insulation
of ceramic bricks, J. Mater. Civ. Eng., 25 (2013) 1638–1646.
- A.A. Boateng, P.H. Cooke, K.B. Hicks, Microstructure
development of chars derived from high-temperature pyrolysis
of barley (Hordeum vulgare L.) hulls, Fuel, 86 (2007) 735–742.
- J. Olkku, E. Kotaviita, M. Salmenkallio-Marttila, H. Sweins,
S. Home, Connection between structure and quality of barley
husk, J. Am. Soc. Brew. Chem., 63 (2005) 17–22.
- J.-Y. Wang, Ch.-W. Cui, Characterization of the biosorption
properties of dormant spores of Aspergillus niger:
a potential
breakthrough agent for removing Cu2+ from contaminated
water, RSC Adv., 7 (2017) 14069–14077.
- C. Tu, Y. Liu, J. Wei, L. Li, K.G. Scheckel, Y. Luo, Characterization
and mechanism of copper biosorption by a highly copperresistant
fungal strain isolated from copper-polluted acidic
orchard soil, Environ. Sci. Pollut. Res. Int., 25 (2018) 24965–24974.
- J.B. Dulla, M.R. Tamana, S. Boddu, K. Pulipati, K. Srirama,
Biosorption of copper(II) onto spent biomass of Gelidiella acerosa (brown marine algae): optimization and kinetic studies, Appl.
Water Sci., 10 (2020) 56, doi: 10.1007/s13201-019-1125-3.
- T. Kalak, K. Marciszewicz, J. Piepiórka-Stepuk, Highly effective
adsorption process of Ni(II) ions with the use of sewage sludge
fly ash generated by circulating fluidized bed combustion
(CFBC) technology, Materials, 14 (2021) 3106, doi: 10.3390/ma14113106.
- X.-H. Wang, R.-H. Song, S.-X. Teng, M.-M. Gao, J.-Y. Ni,
F.-F. Liu, S.-G. Wang, B.-Y. Gao Characteristics and mechanisms
of Cu(II) biosorption by disintegrated aerobic granules,
J. Hazard. Mater., 179 (2010) 431–437.
- Y.S. Ho, J.C.Y. Ng, G. McKay, Kinetics of pollutant sorption
by biosorbents: review, Sep. Purif. Rev., 29 (2000) 189–232.
- A. Allwar, A. Setiawan, H.A. Ermawan, T. Alviansah, Removal
of Cu(II) ions from aqueous solution by activated carbon
produced from banana fruit bunch (Musa paradisiaca), Desal.
Water Treat., 172 (2019) 139–147.
- S. Stanković, T. Šoštarić, M. Bugarčić, A. Janićijević, K. Pantović-
Spajić, Z. Lopičić, Adsorption of Cu(II) ions from synthetic
solution by sunflower seed husks, Acta Period. Technol.,
50 (2019) 268–277.
- B.K. Adeoye, B.A. Akinbode, J.D. Awe, C.T. Akpa, Evaluation of
biosorptive capacity of waste watermelon seed for lead(II) removal
from aqueous solution, Am. J. Environ. Eng., 10 (2020) 1–8.
- A. Lopez-Delgado, C. Perez, F.A. Lopez, Sorption of heavy
metals on blast furnace sludge, Water Res., 32 (1998) 989–996.
- M. Iqbal, A. Saeed, I. Kalim, Characterization of adsorptive
capacity and investigation of mechanism of Cu2+, Ni2+ and
Zn2+ adsorption on mango peel waste from constituted metal
solution and genuine electroplating effluent, Sep. Sci. Technol.,
44 (2009) 3770–3791.
- J.R. Rangel-Mendez, M. Streat, Adsorption of cadmium by
activated carbon cloth: influence of surface oxidation and
solution pH, Water Res., 36 (2002) 1244–1252.
- S.M. Lee, A.P. Davis, Removal of Cu(II) and Cd(II) from
aqueous solution by seafood processing waste sludge, Water
Res., 35 (2001) 534–540.
- S.S. Ahluwalia, D. Goyal, Microbial and plant derived biomass
for removal of heavy metals from wastewater, Bioresour.
Technol., 98 (2007) 2243–2257.
- W.S. Wan Ngah, L.C. Teong, M.A.K.M. Hanafiah, Adsorption
of dyes and heavy metal ions by chitosan composites: a review,
Carbohydr. Polym., 83 (2011) 1446–1456.
- S. Kushwaha, B. Sreedhar, R. Bhatt, P.P. Sudhakar, Spectroscopic
characterization for remediation of copper, cadmium and
mercury using modified palm shell powder, J. Taiwan Inst.
Chem. Eng., 46 (2015) 191–199.
- M. Šćiban, M. Klašnja, B. Škrbić, Adsorption of copper ions
from water by modified agricultural by-products, Desalination,
229 (2008) 170–180.
- F.N. Acar, Z. Eren, Removal of Cu(II) ions by activated poplar
sawdust (Samsun Clone) from aqueous solutions, J. Hazard.
Mater., 137 (2006) 909–914.
- G. Li, M. Wang, X. Chen, X. Li, Adsorption performance for
the removal of Cu(II) on the ammonium acetate modified
sugarcane bagasse, Nat. Environ. Pollut. Technol., 16 (2017)
843–848.
- M.A. Hossain, H.H. Ngo, W.S. Guo, T.V. Nguyen, Palm oil
fruit shells as biosorbent for copper removal from water and
wastewater: experiments and sorption models, Bioresour.
Technol., 113 (2012) 97–101.
- S.R. Shukla, R.S. Pai, Adsorption of Cu(II), Ni(II) and Zn(II) on
dye loaded groundnut shells and sawdust, Sep. Purif. Technol.,
43 (2005) 1–8.
- I.M. Kenawy, M.A. Hafez, M.A. Ismail, M.A. Hashem,
Adsorption of Cu(II), Cd(II), Hg(II), Pb(II) and Zn(II) from
aqueous single metal solutions by guanyl-modified cellulose,
Int. J. Biol. Macromol., 107 (2018) 1538–1549.