References

  1. J. Levinson, Malting-brewing: a changing sector, BIOS Int., 5 (2002) 12–15.
  2. S. Ciancia, Micro-brewing: a new challenge for beer, BIOS Int., 2 (2000) 4–10.
  3. M. de Oliveira Dias, Heineken brewing industry in Brazil, Int. J. Manage. Technol. Eng., 8 (2018) 1304–1310.
  4. J. Conway, Beer Production Worldwide From 1998 to 2019. Available at: https://www.statista.com/statistics/270275/worldwide-beer-production/ (Access: February 16, 2022).
  5. Products Eurostat News. Available at: https://ec.europa.eu/ eurostat/web/products-eurostat-news/-/edn-20210805-1/ (Access: February 16, 2022).
  6. A.C. Fărcaş, S.A. Socaci, E. Mudura, F.V. Dulf, D.C. Vodnar, M. Tofană, L.C. Salanță, Exploitation of Brewing Industry Wastes to Produce Functional Ingredients, M. Kanauchi, Ed., Brewing Technology, InTechOpen, London, UK, 2017, pp. 137–156.
  7. V.K. Gupta, I. Ali, Environmental Water: Advances in Treatment, Remediation and Recycling, Elsevier, Amsterdam, The Netherlands, 2013, pp. 1–232.
  8. T. Kalak, J. Walczak, M. Ulewicz, Adsorptive recovery of Cd(II) ions with the use of post-production waste generated in the brewing industry, Energies, 14 (2021) 5543, doi: 10.3390/en14175543.
  9. The Act of 14 December 2012 on Waste (Polish Journal of Laws 2013, Item 21, As Amended).
  10. Regulation of the Minister of Environment of 11 May 2015 on Waste Recovery Outside of Installations and Devices (Polish Journal of Laws From 2015, Item 796).
  11. D. Yu, Y. Sun, W. Wang, S.F. O’Keefe, A.P. Neilson, H. Feng, Z. Wang, H. Huang, Recovery of protein hydrolysates from brewer’s spent grain using enzyme and ultrasonication, Int. J. Food Sci. Technol., 55 (2020) 357–368.
  12. O. Kanauchi, K. Mitsuyama, Y. Araki, Development of a functional germinated barley foodstuff from brewer’s spent grain for the treatment of ulcerative colitis, J. Am. Soc. Brew. Chem., 59 (2001) 59–62.
  13. K. Kemppainen, K. Rommi, U. Holopainen, K. Kruus, Steam explosion of brewer’s spent grain improves enzymatic digestibility of carbohydrates and affects solubility and stability of proteins, Appl. Biochem. Biotechnol., 180 (2016) 94–108.
  14. F. Carvalheiro, M.P. Esteves, J.C. Parajó, H. Pereira, F.M. Gírio, Production of oligosaccharides by autohydrolysis of brewery’s spent grain, Bioresour. Technol., 91 (2004) 93–100.
  15. O.P. Sobukola, J.M. Babajide, O. Ogunsade, Effect of brewers spent grain addition and extrusion parameters on some properties of extruded yam starch-based pasta, J. Food Process. Preserv., 37 (2013) 734–743.
  16. J.P. Silva, S. Sousa, J. Rodrigues, H. Antunes, J.J. Porter, I. Gonçalves, S. Ferreira-Dias, Adsorption of Acid orange 7 dye in aqueous solutions by spent brewery grains, Sep. Purif. Technol., 40 (2004) 309–315.
  17. N.G.T. Meneses, S. Martins, J.A. Teixeira, S.I. Mussatto, Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains, Sep. Purif. Technol., 108 (2013) 152–158.
  18. S.I. Mussatto, I.C. Roberto, Chemical characterization and liberation of pentose sugars from brewer’s spent grain, J. Chem. Technol. Biotechnol., 81 (2006) 268–274.
  19. D.M. Waters, F. Jacob, J. Titze, E.K. Arendt, E. Zannini, Fibre, protein and mineral fortification of wheat bread through milled and fermented brewer’s spent grain enrichment, Eur. Food Res. Technol., 235 (2012) 767–778.
  20. C. Xiros, E. Topakas, P. Katapodis, P. Christakopoulos, Hydrolysis and fermentation of brewer’s spent grain by Neurospora crassa, Bioresour. Technol., 99 (2008) 5427–5435.
  21. K.M. Khidzir, A. Noorlidah, P. Agamuthu, Brewery spent grain: chemical characteristics and utilization as an enzyme substrate, Malays. J. Sci., 29 (2019) 41–51.
  22. A.J. Jay, M.L. Parker, R. Faulks, F. Husband, P. Wilde, A.C. Smith, C.B. Faulds, K.W. Waldron, A systematic micro-dissection of brewers’ spent grain, J. Cereal Sci., 47 (2008) 357–364.
  23. J.A. Robertson, K.J.A. I’Anson, J. Treimo, C.B. Faulds, T.F. Brocklehurst, V.G.H. Eijsink, K.W. Waldron, Profiling brewers’ spent grain for composition and microbial ecology at the site of production, LWT Food Sci. Technol., 43 (2010) 890–896.
  24. J. Treimo, B. Westereng, S.J. Horn, P. Forssell, J.A. Robertson, C.B. Faulds, K.W. Waldron, J. Buchert, V.G.H. Eijsink, Enzymatic solubilization of brewers’ spent grain by combined action of carbohydrases and peptidases, J. Agric. Food Chem., 57 (2009) 3316–3324.
  25. Regulation of the Minister of Environment of 21 March 2006 on Waste Recovery Outside of Installations and Devices (Polish Journal of Laws 06.49.356, Appendix 1).
  26. W. Czekała, A. Pawlisiak, Produkcja i wykorzystanie wysłodzin browarnianych, Technika Rolnicza Ogrodnicza Leśna, 5 (2017) 23–25.
  27. M. Jackowski, Ł. Niedżwiecki, K. Jagiełło, O. Uchańska, A. Trusek, Brewer’s spent grains—valuable beer industry by-product, Biomolecules, 10 (2020) 1669, doi: 10.3390/biom10121669.
  28. S.S. Alquzweeni, R.S. Alkizwini, Removal of cadmium from contaminated water using coated chicken bones with doublelayer hydroxide (Mg/Fe-LDH), Water, 12 (2020) 2303, 1–13, doi: 10.3390/w12082303.
  29. Ch.Ch. Nnaji, S.Ch. Emefu, Effect of particle-size on the sorption of lead from water by different species of sawdust: equilibrium and kinetic study, Bioresources, 12 (2017) 4123–4145.
  30. Y. Tachibana, T. Kalak, M. Nogami, M. Tanaka, Combined use of tannic acid-type organic composite adsorbents and ozone for simultaneous removal of various kinds of radionuclides in river water, Water Res., 182 (2020) 116032, doi: 10.1016/j. watres.2020.116032.
  31. I.J. Alinnor, Adsorption of heavy metal ions from aqueous solution by fly ash, Fuel, 86 (2007) 853–857.
  32. A. Hejna, M. Barczewski, K. Skórczewska, J. Szulc, B. Chmielnicki, J. Korol, K. Formela, Sustainable upcycling of brewers’ spent grain by thermo-mechanical treatment in twin-screw extruder, J. Cleaner Prod., 285 (2021) 124839, doi: 10.1016/j.jclepro.2020.124839.
  33. A.O. Balogun, F. Sotoudehnia, A.G Mcdonald, Thermokinetic, spectroscopic study of brewer’s spent grains and characterisation of their pyrolysis products, J. Anal. Appl. Pyrolysis, 127 (2017) 8–16.
  34. M. Erdemoglu, M. Sarikaya, Effects of heavy metals and oxalate on the zeta potential of magnetite, J. Colloid Interface Sci., 300 (2006) 795–804.
  35. Ö. Demirbas, M. Alkan, M. Doğan, Y. Turhan, H. Namli, P. Turan, Electrokinetic and adsorption properties of sepiolite modified by 3-aminopropyltriethoxysilane, J. Hazard. Mater., 149 (2007) 650–656.
  36. T. Kalak, Y. Tachibana, Removal of lithium and uranium from seawater using fly ash and slag generated in the CFBC technology, RSC Adv., 11 (2021) 21964–21978.
  37. E.A. López-Maldonado, M.T. Oropeza-Guzmán, Strategic Design of Heavy Metals Removal Agents through Zeta Potential Measurements, H. El-Din M. Saleh, R.F. Aglan, Eds., Heavy Metals, InTechOpen, London, UK, 2018, pp. 53–65.
  38. M. Kosmulski, E. Mączka, The isoelectric point of an exotic oxide: tellurium(IV) oxide, Molecules, 26 (2021) 3136, doi: 10.3390/molecules26113136.
  39. A. Kołodziejczak-Radzimska, T. Jesionowski, Characterization of amino-, epoxy- and carbonyl-functionalized halloysite and its application in the immobilization of aminoacylase from Aspergillus melleus, Physicochem. Probl. Miner. Process., 55 (2019) 128–139.
  40. Y. Tao, Y. Han, W. Liu, L. Peng, Y. Wang, S. Kadam, P.L. Show, X. Ye, Parametric and phenomenological studies about ultrasoundenhanced biosorption of phenolics from fruit pomace extract by waste yeast, Ultrason. Sonochem., 52 (2019) 193–204.
  41. F.T.V. Rubio, G.M. Maciel, M.V. Silva, V.G. Correa, R.M. Peralta, C.W.I. Haminiuk, Enrichment of waste yeast with bioactive compounds from grape pomace as an innovative and emerging technology: kinetics, isotherms and bioaccessibility, Innovative Food Sci. Emerg. Technol., 45 (2018) 18–28.
  42. E. Ferraz, J. Coroado, J. Gamelas, J. Silva, F. Rocha, A. Velosa, Spent brewery grains for improvement of thermal insulation of ceramic bricks, J. Mater. Civ. Eng., 25 (2013) 1638–1646.
  43. A.A. Boateng, P.H. Cooke, K.B. Hicks, Microstructure development of chars derived from high-temperature pyrolysis of barley (Hordeum vulgare L.) hulls, Fuel, 86 (2007) 735–742.
  44. J. Olkku, E. Kotaviita, M. Salmenkallio-Marttila, H. Sweins, S. Home, Connection between structure and quality of barley husk, J. Am. Soc. Brew. Chem., 63 (2005) 17–22.
  45. J.-Y. Wang, Ch.-W. Cui, Characterization of the biosorption properties of dormant spores of Aspergillus niger:
    a potential breakthrough agent for removing Cu2+ from contaminated water, RSC Adv., 7 (2017) 14069–14077.
  46. C. Tu, Y. Liu, J. Wei, L. Li, K.G. Scheckel, Y. Luo, Characterization and mechanism of copper biosorption by a highly copperresistant fungal strain isolated from copper-polluted acidic orchard soil, Environ. Sci. Pollut. Res. Int., 25 (2018) 24965–24974.
  47. J.B. Dulla, M.R. Tamana, S. Boddu, K. Pulipati, K. Srirama, Biosorption of copper(II) onto spent biomass of Gelidiella acerosa (brown marine algae): optimization and kinetic studies, Appl. Water Sci., 10 (2020) 56, doi: 10.1007/s13201-019-1125-3.
  48. T. Kalak, K. Marciszewicz, J. Piepiórka-Stepuk, Highly effective adsorption process of Ni(II) ions with the use of sewage sludge fly ash generated by circulating fluidized bed combustion (CFBC) technology, Materials, 14 (2021) 3106, doi: 10.3390/ma14113106.
  49. X.-H. Wang, R.-H. Song, S.-X. Teng, M.-M. Gao, J.-Y. Ni, F.-F. Liu, S.-G. Wang, B.-Y. Gao Characteristics and mechanisms of Cu(II) biosorption by disintegrated aerobic granules, J. Hazard. Mater., 179 (2010) 431–437.
  50. Y.S. Ho, J.C.Y. Ng, G. McKay, Kinetics of pollutant sorption by biosorbents: review, Sep. Purif. Rev., 29 (2000) 189–232.
  51. A. Allwar, A. Setiawan, H.A. Ermawan, T. Alviansah, Removal of Cu(II) ions from aqueous solution by activated carbon produced from banana fruit bunch (Musa paradisiaca), Desal. Water Treat., 172 (2019) 139–147.
  52. S. Stanković, T. Šoštarić, M. Bugarčić, A. Janićijević, K. Pantović- Spajić, Z. Lopičić, Adsorption of Cu(II) ions from synthetic solution by sunflower seed husks, Acta Period. Technol., 50 (2019) 268–277.
  53. B.K. Adeoye, B.A. Akinbode, J.D. Awe, C.T. Akpa, Evaluation of biosorptive capacity of waste watermelon seed for lead(II) removal from aqueous solution, Am. J. Environ. Eng., 10 (2020) 1–8.
  54. A. Lopez-Delgado, C. Perez, F.A. Lopez, Sorption of heavy metals on blast furnace sludge, Water Res., 32 (1998) 989–996.
  55. M. Iqbal, A. Saeed, I. Kalim, Characterization of adsorptive capacity and investigation of mechanism of Cu2+, Ni2+ and Zn2+ adsorption on mango peel waste from constituted metal solution and genuine electroplating effluent, Sep. Sci. Technol., 44 (2009) 3770–3791.
  56. J.R. Rangel-Mendez, M. Streat, Adsorption of cadmium by activated carbon cloth: influence of surface oxidation and solution pH, Water Res., 36 (2002) 1244–1252.
  57. S.M. Lee, A.P. Davis, Removal of Cu(II) and Cd(II) from aqueous solution by seafood processing waste sludge, Water Res., 35 (2001) 534–540.
  58. S.S. Ahluwalia, D. Goyal, Microbial and plant derived biomass for removal of heavy metals from wastewater, Bioresour. Technol., 98 (2007) 2243–2257.
  59. W.S. Wan Ngah, L.C. Teong, M.A.K.M. Hanafiah, Adsorption of dyes and heavy metal ions by chitosan composites: a review, Carbohydr. Polym., 83 (2011) 1446–1456.
  60. S. Kushwaha, B. Sreedhar, R. Bhatt, P.P. Sudhakar, Spectroscopic characterization for remediation of copper, cadmium and mercury using modified palm shell powder, J. Taiwan Inst. Chem. Eng., 46 (2015) 191–199.
  61. M. Šćiban, M. Klašnja, B. Škrbić, Adsorption of copper ions from water by modified agricultural by-products, Desalination, 229 (2008) 170–180.
  62. F.N. Acar, Z. Eren, Removal of Cu(II) ions by activated poplar sawdust (Samsun Clone) from aqueous solutions, J. Hazard. Mater., 137 (2006) 909–914.
  63. G. Li, M. Wang, X. Chen, X. Li, Adsorption performance for the removal of Cu(II) on the ammonium acetate modified sugarcane bagasse, Nat. Environ. Pollut. Technol., 16 (2017) 843–848.
  64. M.A. Hossain, H.H. Ngo, W.S. Guo, T.V. Nguyen, Palm oil fruit shells as biosorbent for copper removal from water and wastewater: experiments and sorption models, Bioresour. Technol., 113 (2012) 97–101.
  65. S.R. Shukla, R.S. Pai, Adsorption of Cu(II), Ni(II) and Zn(II) on dye loaded groundnut shells and sawdust, Sep. Purif. Technol., 43 (2005) 1–8.
  66. I.M. Kenawy, M.A. Hafez, M.A. Ismail, M.A. Hashem, Adsorption of Cu(II), Cd(II), Hg(II), Pb(II) and Zn(II) from aqueous single metal solutions by guanyl-modified cellulose, Int. J. Biol. Macromol., 107 (2018) 1538–1549.