References

  1. J. Yang, B. Hou, J. Wang, B. Tian, J. Bi, N. Wang, X. Li, X. Huang, Nanomaterials for the removal of heavy metals from wastewater, Nanomaterials, 9 (2019) 424, doi: 10.3390/nano9030424.
  2. Ş. Kubilay, R. Gürkan, A. Savran, T. Şahan, Removal of Cu(II), Zn(II) and Co(II) ions from aqueous solutions by adsorption onto natural bentonite, Adsorption, 13 (2007) 41–51.
  3. M. Galamboš, P. Suchánek, O. Rosskopfová, Sorption of anthropogenic radionuclides on natural and synthetic inorganic sorbents, J. Radioanal. Nucl. Chem., 293 (2012) 613–633.
  4. E. Viglašová, M. Daňo, M. Galamboš, A. Krajňák, O. Rosskopfová, P. Rajec, Investigation of Cu(II) adsorption on Slovak bentonites and illite/smectite for agricultural applications, J. Radioanal. Nucl. Chem., 314 (2017) 2425–2435.
  5. A. Krajňák, L. Pivarčiová, O. Rosskopfová, M. Galamboš, P. Rajec, Adsorption of nickel on rhyolitic Slovak bentonites, J. Radioanal. Nucl. Chem., 304 (2015) 587–593.
  6. R. Kamaraj, P. Ganesan, J. Lakshmi, S. Vasudevan, Removal of copper from water by electrocoagulation process—effect of alternating current (AC) and direct current (DC), Environ. Sci. Pollut. Res., 20 (2013) 399–412.
  7. S. Vasudevan, J. Lakshmi, Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water – a novel approach, Sep. Purif. Technol., 80 (2011) 643–651.
  8. S. Vasudevan, J. Lakshmi, Process conditions and kinetics for the removal of copper from water by electrocoagulation, Environ. Eng. Sci., 29 (2012) 563–572.
  9. S. Vasudevan, J. Lakshmi, G. Sozhan, Optimization of electrocoagulation process for the simultaneous removal of mercury, lead, and nickel from contaminated water, Environ. Sci. Pollut. Res., 19 (2012) 2734–2744.
  10. K. Tanabe, Solid Acid and Base Catalysis, J.R. Anderson, M. Boudart, Eds., Catalysis Science and Technology, Springer Verlag, New York, 1981, p. 231.
  11. M.E. Jiménez-Castañeda, D.I. Medina, Use of surfactantmodified zeolites and clays for the removal of heavy metals from water, Water, 9 (2017) 235, doi: 10.3390/w9040235.
  12. A. Perry, Cheryl McCoy, Eds., Living Clay Natures Own Miracle Cure, 1st ed., Perry Productions, Kyle, Texas, 2006.
  13. F. Bergaya, G. Lagaly, General Introduction: Clays, Clay Minerals, and Clay Science, F. Bergaya, B.K.G. Theng,
    G. Lagaly, Eds., Handbook of Clay Science: Developments in Clay Science, Vol. 1, Elsevier, Amsterdam, 2006, pp. 1–18.
  14. G.A. Ikhtiyarova, A.S. Özcan, Ö. Gök, A. Özcan, Characterization of natural- and organobentonite by XRD, SEM, FT-IR and thermal analysis techniques and its adsorption behaviour in aqueous solutions, Clay Miner., 47 (2012) 31–44.
  15. S. Parolo, A. Lisa, A. Gentilini, A.M. Di Blasio, S. Barlera, E.B. Nicolis, G.B. Boncoraglio, E.A. Parati, S. Bione, Characterization of the biological processes shaping the genetic structure of the Italian population, BMC Genet., 16 (2015) 132, doi: 10.1186/s12863-015-0293-x.
  16. L.B. de Paiva, A.R. Morales, F.R. Valenzuela Díaz, Organoclays: properties, preparation and applications, Appl. Clay Sci., 42 (2008) 8–24.
  17. Z.Z. Zhang, D.L. Sparks, N.C. Scrivner, Sorption and desorption of quaternary amine cations on clays, Environ. Sci. Technol., 27 (1993) 1625–1631.
  18. Y. Xi, M. Mallavarapu, R. Naidu, Preparation, characterization of surfactants modified clay minerals and nitrate adsorption, Appl. Clay Sci., 48 (2010) 92–96.
  19. R. Mudzielwana, M.W. Gitari, P. Ndungu, Performance evaluation of surfactant modified kaolin clay in As(III) and As(V) adsorption from groundwater: adsorption kinetics, isotherms and thermodynamics, Heliyon, 5 (2019) e02756, doi: 10.1016/j.heliyon.2019.e02756.
  20. S. Ismadji, F.E. Soetaredjo, A. Ayucitra, Clay Materials for Environmental Remediation, Springer Briefs in Green Chemistry for Sustainability, Springer, Cham, 2015, pp. 39–56.
  21. A. Krajňák, E. Viglašová, M. Galamboš, L. Krivosudský, Application of HDTMA-intercalated bentonites in water waste treatment for U(VI) removal, J. Radioanal. Nucl. Chem., 314 (2017) 2489–2499.
  22. S.-H. Lin, R.-S. Juang, Heavy metal removal from water by sorption using surfactant-modified montmorillonite, J. Hazard. Mater., 92 (2002) 315–326.
  23. Y. Liu, P.X. Wu, Z. Dang, D. Ye, Heavy metal removal from water by adsorption using pillared montmorillonite, Acta Geol. Sin., 80 (2006) 219–225.
  24. D.L. Guerra, C. Airoldi, R. de Sousa Viana, Performance of modified montmorillonite clay in mercury adsorption process and thermodynamic studies, Inorg. Chem. Commun., 11 (2008) 20–23.
  25. P. Li, M. Ishiguro, Adsorption of anionic surfactant (sodium dodecyl sulfate) on silica, J. Soil Sci. Plant Nutr., 62 (2016) 223–229.
  26. M.A. Tofighy, T. Mohammadi, Adsorption of divalent heavy metal ions from water using carbon nanotube sheets, J. Hazard. Mater., 185 (2011) 140–147.
  27. R. Baby, B. Saifullah, M.Z. Hussein, Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation, Nanoscale Res. Lett., 14 (2019) 341, doi:10.1186/s11671-019-3167-8.
  28. C. Rodríguez, S. Briano, E. Leiva, Increased adsorption of heavy metal ions in multi-walled carbon nanotubes with improved dispersion stability, Molecules, 25 (2020) 3106, doi: 10.3390/molecules25143106.
  29. L. Zhang, L. Luo, S.H. Zhang, Adsorption of phenanthrene and 1,3-dinitrobenzene on cation-modified clay minerals, Colloids Surf., A, 377 (2011) 278–283.
  30. H., Merrikhpour, M. Jalali, Sorption processes of natural Iranian bentonite exchanged with Cd2+, Cu2+, Ni2+, and Pb2+ cations, Chem. Eng. Commun., 200 (2013) 1645–1665.
  31. E. Fosso-Kankeu, F. Waanders, N. Lemmer, R.H. Steyn, Surfactant Impregnated Bentonite Clay for the Removal of Heavy Metals from Solution, 9th Int’l Conference on Advances in Science, Engineering, Technology & Waste Management (ASETWM-17), Parys, South Africa, 2017, pp. 27–28.
  32. S. Yang, D. Zhao, H. Zhang, S. Lu, L. Chen, X. Yu, Impact of environmental conditions on the sorption behavior of Pb(II) in Na-bentonite suspensions, J. Hazard. Mater., 183 (2010) 632–640.
  33. C. del Hoyo, C. Dorado, M.S. Rodríguez-Cruz, M.J. Sánchez-Martín, Physico-chemical study of selected surfactant-clay mineral systems, J. Therm. Anal. Calorim., 94 (2008) 227–234.
  34. K.O. Adebowale, I.E. Unuabonah, B.I. Olu-Owolabi, The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay, J. Hazard. Mater., 134 (2006) 130–139.
  35. K. Tohdee, L. Kaewsichan, Asadullah, Potential of BCDMACl modified bentonite in simultaneous adsorption of heavy metal Ni(II) and humic acid, J. Environ. Chem. Eng., 6 (2018) 5616–5624.
  36. M. Andrunik, T. Bajda, Modification of bentonite with cationic and nonionic surfactants: structural and textural features, Materials, 12 (2019) 3772, doi: 10.3390/ma12223772.
  37. L.R. Harutyunyan, L.S. Tangamyan, R.S. Harutyunyan, Sorption of Co2+, Cu2+, Zn2+, Mn2+ metal ions from aqueous solutions on anionic surfactant-modified bentonite, Chem. Biol., 53 (2019) 81–85.
  38. R.P. Singh, J.P. Rawat, R. Kumar, Effect of cationic, non-ionic and anionic surfactants on the adsorption of carbofuran on three different types of Indian soils, Adsorpt. Sci. Technol., 18 (2000) 333, doi:10.1260/0263617001493477.
  39. A. Gil, L. Santamaría, S.A. Korili, M.A. Vicente, L.V. Barbosa, S.D. de Souza, L. Marçal, E.H. de Faria, K.J. Ciuffi, A review of organic-inorganic hybrid clay based adsorbents for contaminants removal: synthesis, perspectives and applications, J. Environ. Chem. Eng., 9 (2021) 105808, doi: 10.1016/j.jece.2021.105808.
  40. G. Sheng, S.A. Boyd, S. Xu, A dual function organoclay sorbent for lead and chlorobenzene, Soil Sci. Soc. Am. J., 63 (1999) 73–78.
  41. A.S. Sayed, Removal of toxic pollutants from aqueous solutions by adsorption onto organo-kaolin, Carbon Lett., 10 (2009) 305–313.
  42. R.C. Evans, An Introduction to Crystal Chemistry, Cambridge University Press, London, 1966.
  43. D. Lakherwal, Adsorption of heavy metals: a review, Int. J. Environ. Res. Dev., 4 (2014) 41–48.
  44. V. Dimos, K.J. Haralambous, S. Malamis, A review on the recent studies for chromium species adsorption on raw and modified natural minerals, Crit. Rev. Env. Sci. Technol., 42 (2012) 1977–2016.
  45. A.A. Atia, Adsorption of chromate and molybdate by cetylpyridinium bentonite, Appl. Clay Sci., 41 (2008) 73–84.
  46. T.B. Ibigbami, A.O. Adeola, D.B. Olawade, O.T. Ore, B.O. Isaac, A.A. Sunkanmi, Pristine and activated bentonite for toxic metal removal from wastewater, Water Pract. Technol., 17 (2022) 784–797.
  47. L.P. Cruz-Lopes, M. Macena, B. Esteves, R.P.F. Guiné, Ideal pH for the adsorption of metal ions Cr6+, Ni2+, Pb2+ in aqueous solution with different adsorbent materials, Open Agric., 6 (2021) 115–123.
  48. P. Tan, J. Sun, Y. Hu, Z. Fang, Q. Bi, Y. Chen, J. Cheng, Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes, J. Hazard. Mater., 297 (2015) 251–260.
  49. J.D. Castro-Castro, I.F. Macías-Quiroga, G.I. Giraldo-Gómez, N.R. Sanabria-González, Adsorption of Cr(VI) in aqueous solution using a surfactant-modified bentonite, The Sci. World J., 2020 (2020) 3628163, doi:10.1155/2020/3628163.
  50. A.G. Caporale, A. Violante, Chemical processes affecting the mobility of heavy metals and metalloids in soil environments, Curr. Pollut. Rep., 2 (2016) 15–27.
  51. R. Malik, N. Saini, S. Ahlawat, S. Singhal, S. Lata, Convenient and efficient elimination of heavy metals from wastewater using smart pouch with biomaterial, Pollution, 5 (2019) 13–31.
  52. K. Tohdee, L. Kaewsichan, Asadullah, Enhancement of adsorption efficiency of heavy metal Cu(II) and Zn(II) onto cationic surfactant modified bentonite, J. Environ. Chem. Eng., 6 (2018) 2821–2828.