References
- J. Yang, B. Hou, J. Wang, B. Tian, J. Bi, N. Wang, X. Li,
X. Huang, Nanomaterials for the removal of heavy metals
from wastewater, Nanomaterials, 9 (2019) 424, doi: 10.3390/nano9030424.
- Ş. Kubilay, R. Gürkan, A. Savran, T. Şahan, Removal of Cu(II),
Zn(II) and Co(II) ions from aqueous solutions by adsorption
onto natural bentonite, Adsorption, 13 (2007) 41–51.
- M. Galamboš, P. Suchánek, O. Rosskopfová, Sorption of
anthropogenic radionuclides on natural and synthetic inorganic
sorbents, J. Radioanal. Nucl. Chem., 293 (2012) 613–633.
- E. Viglašová, M. Daňo, M. Galamboš, A. Krajňák, O. Rosskopfová,
P. Rajec, Investigation of Cu(II) adsorption on Slovak bentonites
and illite/smectite for agricultural applications, J. Radioanal.
Nucl. Chem., 314 (2017) 2425–2435.
- A. Krajňák, L. Pivarčiová, O. Rosskopfová, M. Galamboš,
P. Rajec, Adsorption of nickel on rhyolitic Slovak bentonites,
J. Radioanal. Nucl. Chem., 304 (2015) 587–593.
- R. Kamaraj, P. Ganesan, J. Lakshmi, S. Vasudevan, Removal
of copper from water by electrocoagulation process—effect of
alternating current (AC) and direct current (DC), Environ. Sci.
Pollut. Res., 20 (2013) 399–412.
- S. Vasudevan, J. Lakshmi, Effects of alternating and direct
current in electrocoagulation process on the removal of
cadmium from water – a novel approach, Sep. Purif. Technol.,
80 (2011) 643–651.
- S. Vasudevan, J. Lakshmi, Process conditions and kinetics
for the removal of copper from water by electrocoagulation,
Environ. Eng. Sci., 29 (2012) 563–572.
- S. Vasudevan, J. Lakshmi, G. Sozhan, Optimization of
electrocoagulation process for the simultaneous removal of
mercury, lead, and nickel from contaminated water, Environ.
Sci. Pollut. Res., 19 (2012) 2734–2744.
- K. Tanabe, Solid Acid and Base Catalysis, J.R. Anderson,
M. Boudart, Eds., Catalysis Science and Technology, Springer
Verlag, New York, 1981, p. 231.
- M.E. Jiménez-Castañeda, D.I. Medina, Use of surfactantmodified
zeolites and clays for the removal of heavy metals
from water, Water, 9 (2017) 235, doi: 10.3390/w9040235.
- A. Perry, Cheryl McCoy, Eds., Living Clay Natures Own
Miracle Cure, 1st ed., Perry Productions, Kyle, Texas, 2006.
- F. Bergaya, G. Lagaly, General Introduction: Clays, Clay
Minerals, and Clay Science, F. Bergaya, B.K.G. Theng,
G. Lagaly,
Eds., Handbook of Clay Science: Developments in Clay Science,
Vol. 1, Elsevier, Amsterdam, 2006, pp. 1–18.
- G.A. Ikhtiyarova, A.S. Özcan, Ö. Gök, A. Özcan, Characterization
of natural- and organobentonite by XRD, SEM, FT-IR and
thermal analysis techniques and its adsorption behaviour in
aqueous solutions, Clay Miner., 47 (2012) 31–44.
- S. Parolo, A. Lisa, A. Gentilini, A.M. Di Blasio, S. Barlera,
E.B. Nicolis, G.B. Boncoraglio, E.A. Parati, S. Bione,
Characterization of the biological processes shaping the genetic
structure of the Italian population, BMC Genet., 16 (2015) 132,
doi: 10.1186/s12863-015-0293-x.
- L.B. de Paiva, A.R. Morales, F.R. Valenzuela Díaz, Organoclays:
properties, preparation and applications, Appl. Clay Sci.,
42 (2008) 8–24.
- Z.Z. Zhang, D.L. Sparks, N.C. Scrivner, Sorption and desorption
of quaternary amine cations on clays, Environ. Sci. Technol.,
27 (1993) 1625–1631.
- Y. Xi, M. Mallavarapu, R. Naidu, Preparation, characterization
of surfactants modified clay minerals and nitrate adsorption,
Appl. Clay Sci., 48 (2010) 92–96.
- R. Mudzielwana, M.W. Gitari, P. Ndungu, Performance
evaluation of surfactant modified kaolin clay in As(III) and
As(V) adsorption from groundwater: adsorption kinetics,
isotherms and thermodynamics, Heliyon, 5 (2019) e02756,
doi: 10.1016/j.heliyon.2019.e02756.
- S. Ismadji, F.E. Soetaredjo, A. Ayucitra, Clay Materials
for Environmental Remediation, Springer Briefs in Green
Chemistry for Sustainability, Springer, Cham, 2015, pp. 39–56.
- A. Krajňák, E. Viglašová, M. Galamboš, L. Krivosudský,
Application of HDTMA-intercalated bentonites in water
waste treatment for U(VI) removal, J. Radioanal. Nucl. Chem.,
314 (2017) 2489–2499.
- S.-H. Lin, R.-S. Juang, Heavy metal removal from water by
sorption using surfactant-modified montmorillonite, J. Hazard.
Mater., 92 (2002) 315–326.
- Y. Liu, P.X. Wu, Z. Dang, D. Ye, Heavy metal removal from
water by adsorption using pillared montmorillonite, Acta Geol.
Sin., 80 (2006) 219–225.
- D.L. Guerra, C. Airoldi, R. de Sousa Viana, Performance of
modified montmorillonite clay in mercury adsorption process
and thermodynamic studies, Inorg. Chem. Commun., 11 (2008)
20–23.
- P. Li, M. Ishiguro, Adsorption of anionic surfactant (sodium
dodecyl sulfate) on silica, J. Soil Sci. Plant Nutr., 62 (2016)
223–229.
- M.A. Tofighy, T. Mohammadi, Adsorption of divalent heavy
metal ions from water using carbon nanotube sheets, J. Hazard.
Mater., 185 (2011) 140–147.
- R. Baby, B. Saifullah, M.Z. Hussein, Carbon nanomaterials
for the treatment of heavy metal-contaminated water and
environmental remediation, Nanoscale Res. Lett., 14 (2019) 341,
doi:10.1186/s11671-019-3167-8.
- C. Rodríguez, S. Briano, E. Leiva, Increased adsorption of heavy
metal ions in multi-walled carbon nanotubes with improved
dispersion stability, Molecules, 25 (2020) 3106, doi: 10.3390/molecules25143106.
- L. Zhang, L. Luo, S.H. Zhang, Adsorption of phenanthrene and
1,3-dinitrobenzene on cation-modified clay minerals, Colloids
Surf., A, 377 (2011) 278–283.
- H., Merrikhpour, M. Jalali, Sorption processes of natural Iranian
bentonite exchanged with Cd2+, Cu2+, Ni2+, and Pb2+ cations,
Chem. Eng. Commun., 200 (2013) 1645–1665.
- E. Fosso-Kankeu, F. Waanders, N. Lemmer, R.H. Steyn,
Surfactant Impregnated Bentonite Clay for the Removal of
Heavy Metals from Solution, 9th Int’l Conference on Advances
in Science, Engineering, Technology & Waste Management
(ASETWM-17), Parys, South Africa, 2017, pp. 27–28.
- S. Yang, D. Zhao, H. Zhang, S. Lu, L. Chen, X. Yu, Impact of
environmental conditions on the sorption behavior of Pb(II)
in Na-bentonite suspensions, J. Hazard. Mater., 183 (2010)
632–640.
- C. del Hoyo, C. Dorado, M.S. Rodríguez-Cruz, M.J. Sánchez-Martín, Physico-chemical study of selected surfactant-clay
mineral systems, J. Therm. Anal. Calorim., 94 (2008) 227–234.
- K.O. Adebowale, I.E. Unuabonah, B.I. Olu-Owolabi, The effect
of some operating variables on the adsorption of lead and
cadmium ions on kaolinite clay, J. Hazard. Mater., 134 (2006)
130–139.
- K. Tohdee, L. Kaewsichan, Asadullah, Potential of BCDMACl
modified bentonite in simultaneous adsorption of heavy
metal Ni(II) and humic acid, J. Environ. Chem. Eng., 6 (2018)
5616–5624.
- M. Andrunik, T. Bajda, Modification of bentonite with cationic
and nonionic surfactants: structural and textural features,
Materials, 12 (2019) 3772, doi: 10.3390/ma12223772.
- L.R. Harutyunyan, L.S. Tangamyan, R.S. Harutyunyan, Sorption
of Co2+, Cu2+, Zn2+, Mn2+ metal ions from aqueous solutions on
anionic surfactant-modified bentonite, Chem. Biol., 53 (2019)
81–85.
- R.P. Singh, J.P. Rawat, R. Kumar, Effect of cationic, non-ionic
and anionic surfactants on the adsorption of carbofuran on
three different types of Indian soils, Adsorpt. Sci. Technol.,
18 (2000) 333, doi:10.1260/0263617001493477.
- A. Gil, L. Santamaría, S.A. Korili, M.A. Vicente, L.V. Barbosa,
S.D. de Souza, L. Marçal, E.H. de Faria, K.J. Ciuffi, A review of
organic-inorganic hybrid clay based adsorbents for contaminants
removal: synthesis, perspectives and applications, J. Environ.
Chem. Eng., 9 (2021) 105808, doi: 10.1016/j.jece.2021.105808.
- G. Sheng, S.A. Boyd, S. Xu, A dual function organoclay sorbent
for lead and chlorobenzene, Soil Sci. Soc. Am. J., 63 (1999) 73–78.
- A.S. Sayed, Removal of toxic pollutants from aqueous solutions
by adsorption onto organo-kaolin, Carbon Lett., 10 (2009)
305–313.
- R.C. Evans, An Introduction to Crystal Chemistry, Cambridge
University Press, London, 1966.
- D. Lakherwal, Adsorption of heavy metals: a review, Int. J.
Environ. Res. Dev., 4 (2014) 41–48.
- V. Dimos, K.J. Haralambous, S. Malamis, A review on the recent
studies for chromium species adsorption on raw and modified
natural minerals, Crit. Rev. Env. Sci. Technol., 42 (2012)
1977–2016.
- A.A. Atia, Adsorption of chromate and molybdate by
cetylpyridinium bentonite, Appl. Clay Sci., 41 (2008) 73–84.
- T.B. Ibigbami, A.O. Adeola, D.B. Olawade, O.T. Ore, B.O. Isaac,
A.A. Sunkanmi, Pristine and activated bentonite for toxic metal
removal from wastewater, Water Pract. Technol., 17 (2022)
784–797.
- L.P. Cruz-Lopes, M. Macena, B. Esteves, R.P.F. Guiné, Ideal
pH for the adsorption of metal ions Cr6+, Ni2+, Pb2+ in aqueous
solution with different adsorbent materials, Open Agric.,
6 (2021) 115–123.
- P. Tan, J. Sun, Y. Hu, Z. Fang, Q. Bi, Y. Chen, J. Cheng,
Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal
solutions on graphene oxide membranes, J. Hazard. Mater.,
297 (2015) 251–260.
- J.D. Castro-Castro, I.F. Macías-Quiroga, G.I. Giraldo-Gómez,
N.R. Sanabria-González, Adsorption of Cr(VI) in aqueous
solution using a surfactant-modified bentonite, The Sci.
World J., 2020 (2020) 3628163, doi:10.1155/2020/3628163.
- A.G. Caporale, A. Violante, Chemical processes affecting the
mobility of heavy metals and metalloids in soil environments,
Curr. Pollut. Rep., 2 (2016) 15–27.
- R. Malik, N. Saini, S. Ahlawat, S. Singhal, S. Lata, Convenient
and efficient elimination of heavy metals from wastewater
using smart pouch with biomaterial, Pollution, 5 (2019) 13–31.
- K. Tohdee, L. Kaewsichan, Asadullah, Enhancement of
adsorption efficiency of heavy metal Cu(II) and Zn(II) onto
cationic surfactant modified bentonite, J. Environ. Chem. Eng.,
6 (2018) 2821–2828.