References
- ANVISA – Resolução da Diretoria Colegiada – RDC
Nº 200, DE 26 DE DEZEMBRO DE 2017, Ministério da
Saúde – MS, Agência Nacional de Vigilância Sanitária –
ANVISA. Available at: http://antigo.anvisa.gov.br/
documents/10181/3836387/%283%29RDC_200_2017_COMP.
pdf/6316bee6-095d-426b-9398-6b1f659078b5 (Accessed April
2020).
- K. Kümmerer, Drugs in the environment: emission of drugs,
diagnostic aids and disinfectants into wastewater by hospitals
in relation to other sources--a review, Chemosphere, 45 (2001)
957–969.
- T.A.D. Beek, F.-A. Weber, A. Bergmann, S. Hickmann, I. Ebert,
A. Hein, A. Küster, Pharmaceuticals in the environmentglobal
occurrences and perspectives, Environ. Toxicol. Chem.,
35 (2015) 823–835.
- S. González-Alonso, L.M. Merino, S. Esteban, M.L. de Alda,
D. Barceló, J.J. Durán, J. López-Martínez, J. Aceña,
S. Pérez,
N. Mastroianni, A. Silva, M. Catalá, Y. Valcárcel, Occurrence of
pharmaceutical, recreational and psychotropic drug residues
in surface water on the northern Antarctic Peninsula region,
Environ. Pollut., 229 (2017) 241–254.
- K.V. Thomas, K.H. Langford, Green and Sustainable Pharmacy,
Springer Berlin Heidelberg, Berlin, 2010, pp. 211–223.
- C.I. Kosma, D.A. Lambropoulou, T.A. Albanis, Occurrence and
removal of PPCPs in municipal and hospital wastewaters in
Greece, J. Hazard. Mater., 179 (2010) 804–817.
- D. Taylor, T. Senac, Human pharmaceutical products in the
environment – the “problem” in perspective, Chemosphere,
115 (2014) 95–99.
- D.R.S. Lima, M.D. Tonucci, M. Libânio, S.F. Aquino,
Pharmaceuticals and endocrine disrupting compounds in
Brazilian waters: occurrence and removal techniques, Eng.
Sanit. Ambient., 2 (2017) 1043–1054.
- P. McGettingan, D. Henry, Use of non-steroidal antiinflammatory
drugs that elevate cardiovascular risk:
an
examination of sales and essential medicines lists in low-,
middle-, and high-income countries, PLoS Med., 10 (2013)
e1001388, doi: 10.1371/journal.pmed.1001388.
- L. Lonappan, S.L. Brar, R.K. Das, M. Verma, R.Y. Surampalli,
Diclofenac and its transformation products: environmental
occurrence and toxicity - a review, Environ. Int., 96 (2016) 127–138.
- S.E. Owumi, U.J. Dim, Biochemical alterations in diclofenactreated
rats: effect of selenium on oxidative stress, inflammation,
and hematological changes, Toxicol. Res. Appl., (2019),
doi: 10.1177/2397847319874359.
- M. Syed, C. Skonberg, S.H. Hansen, Mitochondrial toxicity
of diclofenac and its metabolites via inhibition of oxidative
phosphorylation (ATP synthesis) in rat liver mitochondria:
possible role in drug induced liver injury (DILI), Toxicol. in
Vitro, 31 (2016) 93–102.
- M. Schmidt, H.T. Sørensen, L. Pedersen, Diclofenac use and
cardiovascular risks: series of nationwide cohort studies, BMJ,
(2018) 362, doi: 10.1136/bmj.k3426.
- J. Lindsay Oaks, M. Gilbert, M.Z. Virani, R.T. Watson,
C.U. Meteyer, B.A. Rideout, H.L. Shivaprasad, S. Ahmed,
M.J.I. Chaudhry, M. Arshad, S. Mahmood, A. Ali, A.A. Khan,
Diclofenac residues as the cause of vulture population decline
in Pakistan, Nature, 42 (2004) 630–633.
- L. Fent, A.A. Weston, D. Caminada, Ecotoxicology of human
pharmaceuticals, Aquat. Toxicol., 76 (2006) 122–159.
- D. Ogada, P. Shaw, R.L. Beyers, R. Buij, C. Murn, J.M. Thiollay,
C.M. Beale, R.M. Holdo, D. Pomeroy, N. Baker,
S.C. Krüger,
A. Botha, M.Z. Virani, A. Monadjem, A.R.E. Sinclair, Another
continental vulture crisis: Africa’s vultures collapsing toward
extinction, Conserv. Lett., 9 (2016) 89–97.
- European Commission – Directive 2013/39/EU of the European
Parliament and of the Council of 12 August 2013 Amending
Directives 2000/60/EC and 2008/105/EC as Regards Priority
Substances in the Field of Water Policy. http://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32013L0039&from=EN
(Accessed October 2019).
- Y. Praveenkumarreddy, K. Vimalkumar, B.R. Ramaswamy,
V. Kumar, R.K. Singhal, H. Basu, C.M. Gopal,
K.E. Vandana,
K. Bhat, H.N. Udayashankar, K. Balakrishna, Assessment
of non-steroidal anti-inflammatory drugs from selected
wastewater treatment plants of Southwestern India, Emerging
Contam., 7 (2021) 43–51.
- M.J. McKie, S.A. Andrews, R.C. Andrews, Conventional
drinking water treatment and direct biofiltration for the
removal of pharmaceuticals and artificial sweeteners: a pilotscale
approach, Sci. Total Environ., 544 (2016) 10–17.
- E.S. Rigobello, A.D.B. Dantas, L. Di Bernardo, E.M. Vieira,
Removal of diclofenac by conventional drinking water
treatment processes and granular activated carbon filtration,
Chemosphere, 92 (2013) 184–191.
- J. Rivera-Utrilla, M. Sánchez-Polo, M.Á. Ferro-García,
G. Prados-Joya, R. Ocampo-Pérez, Pharmaceuticals as emerging
contaminants and their removal from water. A review,
Chemosphere, 93 (2013) 1268–1287.
- W.T. Vieira, M.B. de Farias, M.P. Spaolonzi, M.G.C. da Silva,
M.G.A. Vieira, Endocrine-disrupting compounds: occurrence,
detection methods, effects and promising treatment
pathways—a critical review, J. Environ. Chem. Eng., 9 (2021)
104558, doi: 10.1016/j.jece.2020.104558.
- P. Westerhoff, Y. Yoon, S.A. Snyder, E.C. Wert, Fate of endocrinedisruptor,
pharmaceutical, and personal care product chemicals
during simulated drinking water treatment processes, Environ.
Sci. Technol., 39 (2005) 6649–6663.
- Y. Yoon, P. Westerhoff, S.A. Snyder, E.C. Wert, Nanofiltration
and ultrafiltration of endocrine disrupting compounds,
pharmaceuticals and personal care products, J. Membr. Sci.,
270 (2006) 88–100.
- D. Krajišnik, A. Daković, A. Malenović, M. Milojević-Rakić,
V. Dondur, Ž. Radulović, J. Milić, Investigation of adsorption and
release of diclofenac sodium by modified zeolites composites,
Microporous Mesoporous Mater., 167 (2013) 94–101.
- J.L. Sotelo, G. Ovejero, A. Rodríguez, S. Álvarez, J. Galán,
J. García, Competitive adsorption studies of caffeine and
diclofenac aqueous solutions by activated carbon, Chem. Eng.
J., 240 (2014) 443–453.
- V. Rakić, V. Rac, M. Krmar, O. Otman, A. Auroux, The adsorption
of pharmaceutically active compounds from aqueous solutions
onto activated carbons, J. Hazard. Mater., 282 (2015) 141–149.
- M.A. Rodrigo, O. Scaldione, C.A. Martinez-Huitle,
Electrochemical Water and Wastewater Treatment, Butterworth-Heinemann, Holland, 2018.
- F. Cao, M. Zhang, S. Yuan, J. Feng, Q. Wang, W. Wang, Z. Hu,
Transformation of acetaminophen during water chlorination
treatment: kinetics and transformation products identification,
Environ. Sci. Pollut. Res., 23 (2016) 12303–12311.
- M. Kråkström, S. Saeid, P. Tolvanen, N. Kumar, T. Salmi,
L. Kronberg, P. Eklund, Identification and quantification of
transformation products formed during the ozonation of the
non-steroidal
anti-inflammatory pharmaceuticals ibuprofen
and diclofenac, Ozone: Sci. Eng., The J. Int. Ozone Assoc.,
44 (2021) 157–171.
- M.H. Plumlee, B.D. Stanford, J.-F. Debroux, D. Cory Hopkins,
S.A. Snyder, Costs of advanced treatment in water reclamation,
Ozone: Sci. Eng., The J. Int. Ozone Assoc., 5 (2014) 485–495.
- S. de Boer, J. González-Rodríguez, J.J. Conde, M.T. Moreira,
Benchmarking tertiary water treatments for the removal of
micropollutants and pathogens based on operational and
sustainability criteria, J. Water Process Eng., 46 (2022) 102587,
doi: 10.1016/j.jwpe.2022.102587.
- V. Sundaram, K. Pagilla, T. Guarin, L. Li, R. Marfil-Vega,
Z. Bukhari, Extended field investigations of
ozone-biofiltration
advanced water treatment for potable reuse, Water Res.,
172 (2020) 115513, doi:10.1016/j.watres.2020.115513.
- L.A. Al-Khateeb, S. Almotiry, M.A. Salam, Adsorption of
pharmaceutical pollutants onto graphene nanoplatelets, Chem.
Eng. J., 248 (2014) 191–199.
- N. Suriyanon, P. Punyapalakul, C. Ngamcharussrivichai,
Mechanistic study of diclofenac and carbamazepine adsorption
on functionalized silica-based porous materials, Chem. Eng. J.,
214 (2013) 208–218.
- S.-W. Nam, C. Jung, H. Li, M. Yu, J.R.V. Flora, L.K. Boateng,
N. Her, K.-D. Zoh, Y. Yoon, Adsorption characteristics of
diclofenac and sulfamethoxazole to graphene oxide in aqueous
solution, Chemosphere, 136 (2015) 20–26.
- F.A. Rosli, H. Ahmad, K. Jumbri, A.H. Abdullah,
S. Kamaruzaman, N.A.F. Abdullah, Efficient removal of
pharmaceuticals from water using graphene nanoplatelets as
adsorbent, R. Soc. Open Sci., (2021), doi:10.1098/rsos.201076.
- W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide,
J. Am. Chem. Soc., 80 (1958) 1339, doi:10.1021/ja01539a017.
- S. Lagergren, About the theory of so-called adsorption of
soluble substances, Kungliga Svenska Vetenskapsakademiens,
Handlingar, 24 (1898) 1–39.
- Y.S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- W.K. Webber, J.C. Morris, Kinetics of adsorption on carbon from
solutions, J. Sanit. Eng. Div., Am. Soc. Civ. Eng., 89 (1963) 31–60.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- H.M.F. Freundlich, Over the adsorption in solution, J. Phys.
Chem., 57 (1906) 385–471.
- R.K. Singh, R. Kumar, D.P. Singh, Graphene oxide: strategies
for synthesis, reduction and frontier applications, RSC Adv.,
6 (2016) 64993–65011.
- B.Y.Z. Hiew, L.Y. Lee, X.J. Lee, S. Gan, S. Thangalazhy-
Gopakumar, S.S. Lim, G.-T. Pan, T.C.-K. Yang, Adsorptive
removal of diclofenac by graphene oxide: optimization,
equilibrium, kinetic and thermodynamic studies, J. Taiwan Inst.
Chem. Eng., 98 (2019) 150–163.
- C. Bartlam, S. Morsch, K.W.J. Heard, P. Quayle, S.G. Yeates,
A. Vijayaraghavan, Nanoscale infrared identification and
mapping of chemical functional groups on graphene, Carbon,
139 (2018) 317–324.
- S.-G. Kim, O.-K. Park, J.H. Lee, B.-C. Ku, Layer-by-layer
assembled graphene oxide films and barrier properties of
thermally reduced graphene oxide membranes, Carbon Lett.,
14 (2013) 247–250.
- M.P. More, P.K. Deshmukh, Quality by design approach for
the synthesis of graphene oxide nanosheets using full factorial
design with enhanced delivery of Gefitinib nanocrystals, Mater.
Res. Express, 8 (2021) 075602, doi: 10.1088/2053-1591/ac144b.
- R. Hack, C.H.G. Correia, R.A.D.S. Zanon, S.H. Pezzin,
Characterization of graphene nanosheets obtained by a
modified Hummer’s method, Matéria (Rio de Janeiro),
23 (2018), doi: 10.1590/S1517-707620170001.0324.
- Y.J. Yun, W.G. Hong, W.-J. Kim, Y. Jun, B.H. Kim, A novel
method for applying reduced graphene oxide directly to
electronic textiles from yarns to fabrics, Adv. Mater., 25 (2013)
5701–5705.
- K. Khanafer, K. Vafai, Analysis of the anomalies in graphene
thermal properties, Int. J. Heat Mass Transfer, 104 (2017)
328–336.
- J.-F. Dai, G.-J. Wang, L. Ma, C.-K. Wu, Surface properties of
graphene: relationship to graphene-polymer composites,
Rev. Adv. Mater. Sci., 40 (2015) 60–71.
- W. Luo, C. Bommier, Z. Jian, X. Li, R. Carter, S. Vail, Y. Lu,
J.-J. Lee, X. Ji, Low-surface-area hard carbon anode for Na-ion
batteries via graphene oxide as a dehydration agent, ACS Appl.
Mater. Interfaces, 4 (2015) 2626–2631.
- A. Ariharan, B. Viswanathan, V. Nandhakumar, Nitrogen
doped graphene as potential material for hydrogen storage,
Graphene, 6 (2017) 41–60.
- A. Sheikhmohammadi, S.M. Mohseni, R. Khodadadi, M. Sardar,
M. Abtahi, S. Mahdavi, H. Keramati, Z. Dahaghin, S. Rezaei,
M. Almasian, M. Sarkhosh, M. Faraji, S. Nazari, Application
of graphene oxide modified with
8-hydroxyquinoline for the
adsorption of Cr(VI) from wastewater: optimization, kinetic,
thermodynamic and equilibrium studies, J. Mol. Liq., 233 (2017)
75–88.
- G. Torgut, M. Tanyol, F. Biryan, G. Pihtili, K. Demirelli,
Application of response surface methodology for optimization
of Remazol Brilliant Blue R removal onto a novel polymeric
adsorbent, J. Taiwan Inst. Chem. Eng., 80 (2017) 406–414.
- A. Afkhami, M. Saber-Tehrani, H. Bagheri, Modified maghemite
nanoparticles as an efficient adsorbent for removing some
cationic dyes from aqueous solution, Desalination, 263 (2017)
240–248.
- R. Rostamian, H.A. Behnejad, A comprehensive adsorption
study and modeling of antibiotics as a pharmaceutical waste by
graphene oxide nanosheets, Ecotoxicol. Environ. Saf., 147 (2018)
117–123.
- Drugbank – Diclofenac. Available at: https://go.drugbank.com/
drugs/DB00586 (Accessed April 2020).
- C. Saucier, M.A. Adebayo, E.C. Lima, R. Catalunã, P.S. Thue,
L.D.T. Prola, M.J. Puchana-Rosero, F.M. Machado, F.A. Pavan,
G.L. Dotto, Microwave-assisted activated carbon from
cocoa shell as adsorbent for removal of sodium diclofenac
and nimesulide from aqueous effluents, J. Hazard. Mater.,
289 (2015) 18–27.
- A. Molla, Y. Li, B. Mandal, S.G. Kang, S.H. Hur, J.S. Chung,
Selective adsorption of organic dyes on graphene oxide:
theoretical and experimental analysis, Appl. Surf. Sci.,
464 (2019) 170–177.
- S. Azizian, Kinetic models of sorption: a theoretical analysis,
J. Colloid Interface Sci., 276 (2004) 47–52.
- W. Plazinski, J. Dziuba, W. Rudzinski, Modeling of sorption
kinetics: the pseudo-second order equation and the sorbate
intraparticle diffusivity, Adsorption, 19 (2013) 1055–1064.
- V.C. Silva, M.E.B. Araújo, A.M. Rodrigues, J.M. Cartaxo,
R.R. Menezes, G.A. Neves, Adsorption behavior of
acid-treated
Brazilian palygorskite for cationic and anionic dyes removal
from the water, Sustainability, 13 (2021) 3954, doi: 10.3390/su13073954.
- C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies
in adsorption. Part XI. A system of classification of solution
adsorption isotherms, and its use in diagnosis of adsorption
mechanisms and in measurement of specific surface areas
of solids, J. Chem. Soc., (1960) 3973–3993, doi: 10.1039/JR9600003973.
- M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier,
F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption
of gases, with special reference to the evaluation of surface
area and pore size distribution (IUPAC Technical Report), Pure
Appl. Chem., 87 (2015), doi: 10.1515/pac-2014-1117.
- M.D.G. de Luna, Murniati, W. Budianta, K.K.P. Rivera,
R.O. Arazo, Removal of sodium diclofenac from aqueous
solution by adsorbents derived from cocoa pod husks,
J. Environ. Chem. Eng., 5 (2017) 1465–1474.
- I.M. Jauris, C.F. Matos, C. Saucier, E.C. Lima, A.J.G. Zarbin,
S.B. Fagan, F.M. Machado, I. Zanella, Adsorption of sodium
diclofenac on graphene: a combined experimental and
theoretical study, Phys. Chem. Chem. Phys., 8 (2016) 1526–1536.
- N. Thi Minh Tam, Y. Liu, H. Bashir, Z. Yin, Y. He, X. Zhou,
Efficient removal of diclofenac from aqueous solution by
potassium ferrate-activated porous graphitic biochar: ambient
condition influences and adsorption mechanism, Int. J. Environ.
Res. Public Health, 17 (2019) 291, doi: 10.3390/ijerph17010291.
- T. Liu, Z. Xie, Y. Zhang, J. Fan, Q. Liu, Preparation of cationic
polymeric nanoparticles as an effective adsorbent for removing
diclofenac sodium from water, RSC Adv., 7 (2017) 38279–38286.
- F. Jiang, D. Zhang, X.-k. Ouyang, L.-Y. Yang, Fabrication of
porous polyethyleneimine-functionalized chitosan/Span
80 microspheres for adsorption of diclofenac sodium from
aqueous solutions, Sustainable Chem. Pharm., 21 (2021) 100418,
doi: 10.1016/j.scp.2021.100418.
- I. Duru, D. Ege, A.R. Kamali, Graphene oxides for removal
of heavy and precious metals from wastewater, J. Mater. Sci.,
51 (2016) 6097–6116.