References
- X. Xiao, B.L. Chen, Z.M. Chen, L.Z. Zhu, L.S. Jerald, Insight
into multiple and multilevel structures of biochars and their
potential environmental applications: a critical review, Environ.
Sci. Technol., 52 (2018) 5027–5047.
- A. Saravanan, P. Senthil Kumar, D.-V.N. Vo, S. Swetha,
P. Tsopbou Ngueagni, S. Karishma, S. Jeevanantham,
P.R. Yaashikaa, Ultrasonic assisted agro waste biomass for rapid
removal of Cd(II) ions from aquatic environment: mechanism
and modelling analysis, Chemosphere, 271 (2021) 129484,
doi:10.1016/j.chemosphere.2020.129484.
- A. Uihlein, L. Schebek, Environmental impacts of a
lignocellulose feedstock biorefinery system: an assessment,
Biomass Bioenergy, 33 (2009) 793–802.
- A.N. Swami Nathen, R.S. Robert, Indian rice husk ash –
improving the mechanical properties of concrete:
a review, Int.
J. Eng. Res. Appl., 7 (2017) 76–79.
- N. Shukla, D. Sahoo, N. Remya, Biochar from microwave
pyrolysis of rice husk for tertiary wastewater treatment and
soil nourishment, J. Cleaner Prod., 235 (2019) 1073–1079.
- J. Acharya, U. Kumar, P. Mahammed Rafi, Removal of heavy
metal ions from wastewater by chemically modified agricultural
waste material as potential adsorbent - a review, Int. J. Curr. Eng.
Technol., 8 (2018) 526–530.
- V.R. Madduluri, K.K. Mandari, V. Velpula, M. Varkolu,
S.R.R. Kamaraju, M. Kang, Rice husk-derived carbon-silica
supported Ni catalysts for selective hydrogenation of biomassderived
furfural and levulinic acid, Fuel, 261 (2020) 116339,
doi: 10.1016/j.fuel.2019.116339.
- D. An, Y. Guo, Y. Zhu, Z. Wang, A green route to preparation of
silica powders with rice husk ash and waste gas, Chem. Eng. J.,
162 (2010) 509–514.
- H. Basu, S. Saha, I.A. Mahadevan, M.V. Pimple, R.K. Singhal,
Humic acid coated cellulose derived from rice husk: a novel
biosorbent for the removal of Ni and Cr, J. Water Process Eng.,
32 (2019) 100892, doi:10.1016/j.jwpe.2019.100892.
- P. Chen, W. Gu, W. Fang, X. Ji, R. Bie, Removal of metal
impurities in rice husk and characterization of rice husk ash
under simplified acid pretreatment process, Environ. Prog.
Sustainable Energy, 36 (2017) 830–837.
- S. Handley-Sidhu, J.C. Renshaw, S. Moriyama, B. Stolpe,
C. Mennan, S. Bagheriasl, P. Yong, A. Stamboulis,
M. Paterson-Beedle, K. Sasaki, R.A.D. Pattrick, J.R. Lead, L.E. Macaskie,
Uptake of Sr2+ and Co2+ into biogenic hydroxyapatite:
implications for biomineral ion exchange synthesis, Environ.
Sci. Technol., 45 (2011) 6985–6990.
- Z.P. Yang, C.J. Zhang, Adsorption/desorption behavior of
protein on nanosized hydroxyapatite coatings:
a quartz crystal
microbalance study, Appl. Surf. Sci., 255 (2009) 4569–4574.
- Z. Zhu, L. Li, H. Zhang, Y. Qiu, J. Zhao, Adsorption of lead and
cadmium on Ca-deficient hydroxyapatite, Sep. Sci. Technol.,
45 (2010) 262–268.
- W. Xiong, Y. Yang, D. Huang, L. Hu, J. Wang, C. Zhang,
L. Jiang, M. Cheng, C. Zhou, M. Chen, G. Zeng, C. Lai,
Semiconductor/boron nitride composites: synthesis, properties,
and photocatalysis applications, Appl. Catal., B, 238 (2018)
6–18.
- L. Yuan, M. Yan, Z. Huang, K. He, G. Zeng, A. Cheng, L. Hu,
H. Li, M. Peng, T. Huang, Influences of pH and metal ions on
the interactions of oxytetracycline onto nano-hydroxyapatite
and their co-adsorption behavior in aqueous solution, J. Colloid
Interface Sci., 541 (2019) 101–113.
- S. Saoiabi, A. Gouza, H. Bouyarmane, A. Laghzizil, A. Saoiabi,
Organophosphonate-modified hydroxyapatites for Zn(II) and
Pb(II) adsorption in relation of their structure and surface
properties, J. Environ. Chem. Eng., 4 (2015) 428–433.
- W. Liu, S. Tian, X. Zhao, W. Xie, Y. Gong, D. Zhao, Application
of stabilized nanoparticles for in situ remediation of metalcontaminated
soil and groundwater: a critical review, Curr.
Pollut. Rep., 1 (2015) 280–291.
- S. Mignardi, A. Corami, V. Ferrini, Evaluation of the
effectiveness of phosphate treatment for the remediation
of mine waste soils contaminated with Cd, Cu, Pb, and Zn,
Chemosphere, 86 (2012) 354–360.
- X. Peng, J. Wu, Z. Zhao, X. Wang, H. Dai, L. Xu, G. Xu, Y. Jian,
F. Hu, Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline
via nonradical pathways:
role of high-valent iron-oxo species
and Fe–Nx sites, Chem. Eng. J., 427 (2022) 130803, doi:10.1016/j.cej.2021.130803.
- M. Iqbal, M. Abbas, J. Nisar, A. Nazir, Bioassays based on higher
plants as excellent dosimeters for ecotoxicity monitoring:
a review, Chem. Int., 5 (2019) 1–80.
- M. Abbas, M. Adil, S. Ehtisham-ul-Haque, B. Munir, M. Yameen,
A. Ghaffar, G.A. Shar, M.A. Tahir, M. Iqbal, Vibrio fischeri
bioluminescence inhibition assay for ecotoxicity assessment:
a review, Sci. Total. Environ., 626 (2018) 1295–1309.
- H. Rasoulzadeh, A. Sheikhmohammadi, M. Abtahi, B. Roshan,
R. Jokar, Eco-friendly rapid removal of palladium from aqueous
solutions using alginate-diatomite magnano composite,
J. Environ. Chem. Eng., 9 (2021) 105954, doi: 10.1016/j.
jece.2021.105954.
- H. Godini, F. Hashemi, L. Mansuri, M. Sardar, G. Hassani,
S.M. Mohseni, A.A. Alinejad, S. Golmohammadi,
A.S. Mohammadi,
Water polishing of phenol by walnut green hull as
adsorbent: an insight of adsorption isotherm and kinetic,
J. Water Reuse Desal., 6 (2016) 544–552.
- A. Kausar, H.N. Bhatti, M. Iqbal, A. Ashraf, Batch versus
column modes for the adsorption of radioactive metal onto
rice husk waste: conditions optimization through response
surface methodology, Water Sci. Technol., 76 (2017) 1035–1043.
- Y.Y. Wang, Y.X. Liu, H.H. Lu, R.Q. Yang, S.M. Yang, Competitive
adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatitebiochar
nanocomposite in aqueous solutions, J. Solid State
Chem., 261 (2018) 53–61.
- Y.C. Long, J. Jiang, J. Hu, X.J. Hu, Q. Yang, S.Q. Zhou, Removal
of Pb(II) from aqueous solution by hydroxyapatite/carbon
composite: preparation and adsorption behavior, Colloids
Surf., A, 577 (2019) 471–479.
- M.M. Wang, K.M. Zhang, M.Y. Wu, Q.Y. Wu, J.Y. Liu, J.J. Yang,
J.N. Zhang, Unexpectedly high adsorption capacity of esterified
hydroxyapatite for heavy metal removal, Langmuir, 35 (2019)
16111–16119.
- Z. Chen, B. Chen, C.T. Chiou, Fast and slow rates of naphthalene
sorption to biochars produced at different temperatures,
Environ. Sci. Technol., 46 (2016) 11104–11111.
- N. Alias, N. Ibrahim, M. Hamid, H. Hasbullah, R.R. Ali,
A.N. Sadikin, U.A. Asli, Thermogravimetric analysis of rice
husk and coconut pulp for potential biofuel production by flash
pyrolysis, Malays. J. Anal. Sci., 18 (2014) 705–710.
- B. Chen, Z. Chen, Sorption of naphthalene and 1-naphthol by
biochars of orange peels with different pyrolytic temperatures,
Chemosphere, 76 (2009) 127–133.
- H. Yang, Y. Rong, H. Chen, D.H. Lee, C. Zheng, Characteristics
of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86 (2007)
1781–1788.
- K. Yadav, M. Tyagi, S. Kumari, S. Jagadevan, Influence of process
parameters on optimization of biochar fuel characteristics
derived from rice husk: a promising alternative solid fuel,
Bioenergy Res., 12 (2019) 1052–1065.
- L. Lian, X. Cao, Y. Wu, D. Sun, D. Lou, A green synthesis of
magnetic bentonite material and its application for removal of
microcystin-LR in water, Appl. Surf. Sci., 289 (2014) 245–251.
- W.B. Guan, B.X. Zhao, S. Qiu, N. Liu, N. Lu, R. Cheng, Y. Sun,
The adsorption behavior of Cr(VI) on modified montmorillonite,
J. Northwest Univ., 46 (2016) 375–380.
- J. Yi, Z. Huo, A.M. Asiri, K.A. Alamry, J. Li, Application of
agroforestry waste biomass adsorption materials in water
pollution treatment, J. Prog. Chem., 31 (2019) 760–762
(in Chinese).
- T.K. Sen, D. Gomez, Adsorption of zinc (Zn2+) from aqueous
solution on natural bentonite, Desalination, 267 (2011) 286–294.
- M.S. Fernando, R.M.D. Silva, K.M.N.D. Silva, Synthesis,
characterization, and application of nano hydroxyapatite and
nanocomposite of hydroxyapatite with granular activated
carbon for the removal of Pb2+ from aqueous solutions, Appl.
Surf. Sci., 351 (2015) 95–103.
- Y. Zhang, Z. Ma, Q. Zhang, J. Wang, Q. Ma, Y. Yang, X. Luo,
W. Zhang, Comparison of the physicochemical characteristics
of bio-char pyrolyzed from moso bamboo and rice husk with
different pyrolysis temperatures, Bioresources, 12 (2017)
4652–4669.
- Z. Shen, Y. Zhang, O. Mcmillan, F. Jin, A. Al-Tabbaa,
Characteristics and mechanisms of nickel adsorption on
biochars produced from wheat straw pellets and rice husk,
Environ. Sci. Pollut. Res. Int., 24 (2017) 12809–12819.
- C. Subrahmanyam, D.A. Bulushev, L. Kiwi-Minsker,
Dynamic behavior of activated carbon catalysts during ozone
decomposition at room temperature, Appl. Catal., B, 61 (2005)
98–106.
- M.P. da Rosa, A.V. Igansi, S.F. Lütke, T.R.S.C. Junior,
A.C.R. do Santos, A.P. de Oliveira Lopes Inacio,
L.A. de Almeida
Pinto, P.H. Beck, A new approach to convert rice husk waste
in a quick and efficient adsorbent to remove cationic dye from
water, J. Environ. Chem. Eng., 7 (2019) 103504, doi: 10.1016/j.jece.2019.103504.
- P. Kaur, P. Kaur, K. Kaur, Adsorptive removal of imazethapyr
and imazamox from aqueous solution using modified rice
husk, J. Cleaner Prod., 244 (2019) 118699, doi: 10.1016/j.jclepro.2019.118699.
- X. Li, Q. Shen, D. Zhang, X. Mei, R. Wei, Y. Xu, G. Yu, M. Andrea,
Functional groups determine biochar properties (pH and
EC) as studied by two-dimensional 13C NMR correlation
spectroscopy, PLoS One, 8 (2013) e65949, doi: 10.1371/journal.pone.0065949.
- G.S. Kumar, G. Karunakaran, E.K. Girija, E. Kolesnikov,
N.V. Minh, M.V. Gorshenkov, D. Kuznetso, Size and morphologycontrolled
synthesis of mesoporous hydroxyapatite nanocrystals
by microwave-assisted hydrothermal method, Ceram.
Int., 44 (2018) 11257–11264.
- D. MubarakAli, Microwave irradiation mediated synthesis of
needle-shaped hydroxyapatite nanoparticles as a flocculant for
Chlorella vulgaris, Biocatal. Agric. Biotechnol., 17 (2019) 203–206.
- H. Nishida, M. Kimata, T. Ogata, T. Kawei, Malodors adsorption
behavior of metal cation incorporated hydroxyapatite,
J. Environ. Chem. Eng., 5 (2017) 52815–2819.
- Z. Li, X. Liu, Y. Wang, Modification of sludge-based biochar
and its application to phosphorus adsorption from aqueous
solution, J. Mater. Cycles Waste Manage., 22 (2020) 123–132.
- M. Li, S. Ma, X. Zhu, Preparation of activated carbon from
pyrolyzed rice husk by leaching out ash content after CO2
activation, Bioresources, 11 (2016) 3384–3396.
- D.L. Yao, B.S. Jin, H. Tao, Experimental study on
thermogravimetry-FTIR of rice husk, Energy Res. Util., 3 (2008)
11–15 (in Chinese).
- Y. Shen, K. Yoshikawa, Tar conversion and vapor upgrading
via in situ catalysis using silica-based nickel nanoparticles
embedded in rice husk char for biomass pyrolysis/gasification,
Ind. Eng. Chem. Res., 53 (2014) 10929–10942.
- D. Wang, L. Chu, M. Paradelo, W.J.G.M. Peijnenburg, Y. Wang,
D. Zhou, Transport behavior of humic
acid-modified nanohydroxyapatite
in saturated packed column: effects of Cu,
ionic strength, and ionic composition, J. Colloid Interface Sci.,
360 (2011) 398–407.
- Ö. Akçakal, M. Şahin, M. Erdem, Synthesis and characterization
of high-quality activated carbons from hard-shelled agricultural
wastes mixture by zinc chloride activation, Chem. Eng.
Commun., 206 (2018) 888–897.
- K. Legrouri, E. Khouya, H. Hannache, M. El Hartti, M. Ezzine,
R. Naslain, Activated carbon from molasses efficiency for
Cr(VI), Pb(II) and Cu(II) adsorption: a mechanistic study,
Chem. Int., 3 (2017) 301–310.
- M. Kapnisti, F. Noli, P. Misaelides, G. Vourlias, D. Karfaridis,
A. Hatzidimitriou, Enhanced sorption capacities for lead and
uranium using titanium phosphates; adsorption, kinetics,
equilibrium studies and mechanism implication, Chem. Eng. J.,
342 (2018) 184–195.
- B.M. Weckhuysen, I.E. Wachs, R.A. Schoonheydt, Surface
chemistry and spectroscopy of chromium in inorganic oxides,
Chem. Rev., 96 (1996) 3327–3350.
- C. Zou, J. Liang, J. Wei, Y. Guan, Y. Zhang, Adsorption behavior
of magnetic bentonite for removing Hg(II) from aqueous
solutions, RSC Adv., 8 (2018) 27587–27595.
- C. Zou, W. Jiang, J. Liang, X. Sun, Y. Guan, Removal of Pb(II)
from aqueous solutions by adsorption on magnetic bentonite,
Environ. Sci. Pollut. Res., 26 (2019) 1315–1322.
- Y. Feng, J.L. Gong, G.M. Zeng, Q.Y. Niu, H.Y. Zhang,
C.G. Niu, J.H. Deng, M. Yan, Adsorption of Cd(II) and Zn(II)
from aqueous solutions using magnetic hydroxyapatite
nanoparticles as adsorbents, Chem. Eng. J., 162 (2010) 487–494.
- M. Su, D.C.W. Tsang, X. Ren, Q. Shi, J. Tang, H. Zhang, L. Kong,
L. Hou, G. Song, D. Chen, Removal of U(VI) from nuclear
mining effluent by porous hydroxyapatite: evaluation on
characteristics, mechanisms and performance, Environ. Pollut.,
254 (2019) 112891, doi: 10.1016/j.envpol.2019.07.059.
- M. Akram, H.N. Bhatti, M. Iqbal, S. Noreen, S. Sadaf,
Biocomposite efficiency for Cr(VI) adsorption: kinetic,
equilibrium and thermodynamics studies, J. Environ. Chem.
Eng., 5 (2016) 400–411.
- G. Bharath, D. Prabhu, D. Mangalaraj, C. Viswanathan,
N. Ponpandian, Facile in-situ growth of Fe3O4 nanoparticles
on hydroxyapatite nanorods for pH dependent adsorption and
controlled release of proteins, RSC Adv., 4 (2014) 50510–50520.
- I.A. Bhatti, N. Ahmad, N. Iqbal, M. Zahid, M. Iqbal, Chromium
adsorption using waste tire and conditions optimization by
response surface methodology, J. Environ. Chem. Eng., 5 (2017)
2740–2751.