References
- Y. Ghaffari, N.K. Gupta, J. Bae, K.S. Kim, Heterogeneous
catalytic performance and stability of iron-loaded
ZSM-5,
zeolite-A, and silica for phenol degradation: a microscopic and
spectroscopic approach, Catalysts, 9 (2019) 859, doi: 10.3390/catal9100859.
- C.M. Chen, X.Y. Yao, Q.X. Li, Q.H. Wang, J.H. Liang, S.M. Zhang,
J. Meng, Z.Y. Liu, J.M. Deng, B.A. Yoza, Turf soil enhances
treatment efficiency and performance of phenolic wastewater
in an up-flow anaerobic sludge blanket reactor, Chemosphere,
204 (2018) 227–234.
- S.Q. Liu, Z.C. Zhang, F. Huang, Y.Z. Liu, L. Feng, J. Jiang,
L.Q. Zhang, F. Qi, C. Liu, Carbonized polyaniline activated
peroxymonosulfate (PMS) for phenol degradation: role of PMS
adsorption and singlet oxygen generation, Appl. Catal., B,
286 (2021) 119921, doi: 10.1016/j.apcatb.2021.119921.
- D. Amado-Piña, G. Roa-Morales, C. Barrera-Díaz, P. Balderas-Hernandez, R. Romero, E. Martin del Campo,
R. Natividad,
Synergic effect of ozonation and electrochemical methods on
oxidation and toxicity reduction: phenol degradation, Fuel,
198 (2017) 82–90.
- M. Alshabib, S.A. Onaizi, A review on phenolic wastewater
remediation using homogeneous and heterogeneous enzymatic
processes: current status and potential challenges, Sep. Purif.
Technol., 219 (2019) 186–207.
- M.L. Han, J. Zhang, W. Chu, G.F. Zhou, J.H. Chen, Surfacemodified
sewage sludge-derived carbonaceous catalyst as a
persulfate activator for phenol degradation, Int. J. Environ.
Res. Public Health., 17 (2020) 3286, doi:10.3390/ijerph17093286.
- W.H. Saputera, A.S. Putrie, A.A. Esmailpour, D. Sasongko,
V. Suendo, R.R. Mukti, Technology advances in phenol
removals: current progress and future perspectives, Catalysts,
11 (2021) 998, doi: 10.3390/catal11080998.
- J.L. Wang, S.Z. Wang, Reactive species in advanced oxidation
processes: formation, identification and reaction mechanism,
Chem. Eng. J., 401 (2020) 126158, doi: 10.1016/j.cej.2020.126158.
- H.Z. Wang, W.Q. Guo, B.H. Liu, Q.L. Wu, H.C. Luo, Q. Zhao,
Q.S. Si, F. Sseguya, N.Q. Ren, Edge-nitrogenated biochar
for efficient peroxydisulfate activation: an electron transfer
mechanism, Water Res., 160 (2019) 405–414.
- H.J. Zhou, D.X. Lu, S.Q. Fang, C. Liu, Y.C. Chen, Y.Y. Hu,
Q.J. Luo, Prompting direct single electron transfer to produce
non-radical 1O2/H* by electro-activating peroxydisulfate
process with core-shell cathode, J. Environ. Manage., 287 (2021)
112294, doi: 10.1016/j.jenvman.2021.112294.
- P. Ye, D.M. Wu, M.Y. Wang, Y. Wei, A.H. Xu, X.X. Li, Coating
magnetic CuFe2O4 nanoparticles with OMS-2 for enhanced
degradation of organic pollutants via peroxymonosulfate
activation, Appl. Surf. Sci., 428 (2018) 131–139.
- Q.X. Zhao, Q.M. Mao, Y.Y. Zhou, J.H. Wei, X.C. Liu, J.Y. Yang,
L. Luo, J.C. Zhang, H. Chen, H.B. Chen, L. Tang,
Metal-free
carbon materials-catalyzed sulfate radical-based advanced
oxidation processes: a review on heterogeneous catalysts and
applications, Chemosphere, 189 (2017) 224–238.
- J.F. Yu, H.P. Feng, L. Tang, Y. Pang, G.M. Zeng, Y. Lu, H.R. Dong,
J.J. Wang, Y.N. Liu, C.Y. Feng, J.J. Wang, B. Peng, S.J. Ye, Metal-free
carbon materials for persulfate-based advanced oxidation
process: microstructure, property and tailoring, Prog. Mater.
Sci., 111 (2020) 100654, doi: 10.1016/j.pmatsci.2020.100654.
- Y. Li, R. Baghi, J. Filip, S. Islam, L. Hope-weeks, W.L. Yan,
Activation of peroxydisulfate by ferrite materials for phenol
degradation, ACS Sustainable Chem. Eng., 7 (2019) 8099–8108.
- G.Y. Chen, G.Y. Wu, N. Li, X.K. Lu, J.H. Zhao, M.T. He,
B.B. Yan, H.Q. Zhang, X.G. Duan, S.B. Wang, Landfill leachate
treatment by persulphate related advanced oxidation
technologies, J. Hazard. Mater., 418 (2021) 126355, doi:10.1016/j.jhazmat.2021.126355.
- S.H. Chen, L.Y. Ma, Y.G. Du, W. Zhan, T.C. Zhang, D.Y. Du,
Highly efficient degradation of rhodamine B by carbon
nanotubes-activated persulfate, Sep. Purif. Technol., 256 (2021)
117788, doi:10.1016/j.seppur.2020.117788.
- X.W. Ao, W.J. Liu, W.J. Sun, M.Q. Cai, C. Yang, Z.D. Lu,
C. Li, Medium pressure UV-activated peroxymonosulfate
for ciprofloxacin degradation: kinetics, mechanism, and
genotoxicity, Chem. Eng. J., 345 (2018) 87–97.
- M.M. Zhang, Y. Gong, N. Ma, X. Zhao, Promoted photoelectrocatalytic
degradation of BPA with peroxymonosulfate on
a MnFe2O4 modified carbon paper cathode, Chem. Eng. J.,
399 (2020) 125088, doi:10.1016/j.cej.2020.125088.
- X.Q. Zhou, A. Jawad, M.Y. Luo, C.G. Luo, T.T. Zhang, H.B. Wang,
J. Wang, S.L. Wang, Z.L. Chen, Z.Q. Chen, Regulating activation
pathway of Cu/persulfate through the incorporation of
unreducible metal oxides: pivotal role of surface oxygen
vacancies, Appl. Catal., B, 286 (2021) 119914, doi:10.1016/j.apcatb.2021.119914.
- G.D. Fang, W.H. Wu, Y.M. Deng, D.W. Zhou, Homogenous
activation of persulfate by different species of vanadium ions
for PCBs degradation, Chem. Eng. J., 323 (2017) 84–95.
- X.L. Zhang, M.B. Feng, R.J. Qu, H. Liu, L.S. Wang, Z.Y. Wang,
Catalytic degradation of diethyl phthalate in aqueous solution
by persulfate activated with nano-scaled magnetic CuFe2O4/MWCNTs, Chem. Eng. J., 301 (2016) 1–11.
- J.L. Wang, S.C. Wang, Activation of persulfate (PS) and
peroxymonosulfate (PMS) and application for the degradation
of emerging contaminants, Chem. Eng. J., 334 (2018) 1502–1517.
- T. Dippong, E.A. Levei, O. Cadar, Recent advances in
synthesis and applications of MFe2O4 (M = Co, Cu, Mn, Ni,
Zn) nanoparticles, Nanomaterials, 11 (2021) 1560, doi: 10.3390/nano11061560.
- J. Li, J.F. Yan, G. Yao, Y.H. Zhang, X. Li, B. Lai, Improving
the degradation of atrazine in the three-dimensional (3D)
electrochemical process using CuFe2O4 as both particle electrode
and catalyst for persulfate activation, Chem. Eng. J., 361 (2019)
1317–1332.
- K. Guan, P.J. Zhou, J.Y. Zhang, L.L. Zhu, Catalytic degradation
of Acid Orange 7 in water by persulfate activated with CuFe2O4@RSDBC, Mater. Res. Express, 7 (2020) 016529.
- B.Y. Wang, Q.Q. Li, Y. Lv, H.B. Fu, D.Y. Liu, Y.F Feng, H.F. Xie,
H.X. Qu, Insights into the mechanism of peroxydisulfate
activated by magnetic spinel CuFe2O4/SBC as a heterogeneous
catalyst for bisphenol S degradation, Chem. Eng. J., 416 (2021)
129162, doi: 10.1016/j.cej.2021.129162.
- W.X. Qin, G.D. Fang, Y.J. Wang, D.M. Zhou, Mechanistic
understanding of polychlorinated biphenyls degradation by
peroxymonosulfate activated with CuFe2O4 nanoparticles: key
role of superoxide radicals, Chem. Eng. J., 348 (2018) 526–534.
- H.X. Zhang, Y.Y. Song, L.C. Nengzi, J.F. Gou, B. Li, X.W. Chen,
Activation of persulfate by a novel magnetic
CuFe2O4/Bi2O3
composite for lomefloxacin degradation, Chem. Eng. J.,
379 (2020) 122362, doi:10.1016/j.cej.2019.122362.
- H. Lee, H.J. Lee, J. Jeong, J. Lee, N.B. Park, C. Lee, Activation of persulfates
by carbon nanotubes: oxidation of organic compounds
by nonradical mechanism, Chem. Eng. J., 266 (2015) 28–33.
- T. Zhang, Y. Chen, Y.R. Wang, J. Le Roux, Y. Yang, J. Croué,
Efficient peroxydisulfate activation process not relying on
sulfate radical generation for water pollutant degradation,
Environ. Sci. Technol., 48 (2014) 5868–5875.
- Y. Feng, C.Z. Liao, L.J. Kong, D.L. Wu, Y.M. Liu, P.H. Lee,
K. Shih, Facile synthesis of highly reactive and stable Fe-doped
g-C3N4 composites for peroxymonosulfate activation: a novel
nonradical oxidation process, J. Hazard. Mater., 354 (2018)
63–71.
- X. Chen, W.D. Oh, T.T. Lim, Graphene- and CNTs-based
carbocatalysts in persulfates activation: material design and
catalytic mechanisms, Chem. Eng. J., 354 (2018) 941–976.
- P.F. Xiao, L. An, D.D. Wu, The use of carbon materials in
persulfate-based advanced oxidation processes:
a review, New
Carbon Mater., 35 (2020) 667–683.
- A. Jawad, J. Lang, Z.W. Liao, A. Khan, J. Ifthikar, Z.A. Lv,
A.J. Long, Z.L. Chen, Z.Q. Chen, Activation of persulfate by
CuOx@Co-LDH: a novel heterogeneous system for contaminant
degradation with broad pH window and controlled leaching,
Chem. Eng. J., 335 (2018) 548–559.
- X.G. Duan, H.Q. Sun, M. Tade, S.B. Wang, Metal-free activation
of persulfate by cubic mesoporous carbons for catalytic
oxidation via radical and nonradical processes, Catal. Today,
307 (2018) 140–146.
- X.H. Ren, H.H. Guo, J.K. Feng, P.C. Si, L. Zhang, L.J. Ci, Synergic
mechanism of adsorption and metal-free catalysis for phenol
degradation by N-doped graphene aerogel, Chemosphere,
191 (2018) 389–399.
- P.F. Xue, J. Gao, Y.B. Bao, J.B. Wang, Q.Y. Li, C.F. Wu, An
analysis of microstructural variations in carbon black modified
by oxidation or ultrasound, Carbon, 49 (2011) 3346–3355.
- M.A. Fayidh, S. Kallary, P.A.S. Babu, M. Sivarajan, M. Sukumar,
A rapid and miniaturized method for the selection of microbial
phenol degraders using colourimetric microtitration, Curr.
Microbiol., 70 (2015) 898–906.
- Environmental Protection Industry Standard HJ/T 399-2007, Water Quality-Determination of the Chemical Oxygen
Demand-Fast Digestion-Spectrophotometric Method, Ministry
of Ecology and Environment of the People’s Republic of China,
2007.
- C.J. Liang, C.F. Huang, N.H. Mohanty, R.M. Kurakalva, A rapid
spectrophotometric determination of persulfate anion in ISCO,
Chemosphere, 73 (2008) 1540–1543.
- H.X. Zhang, Y.Y. Song, L.C. Nengzi, J.F. Gou, B. Li, X.W. Cheng,
Activation of persulfate by a novel magnetic CuFe2O4/Bi2O3
composite for lomefloxacin degradation, Chem. Eng. J.,
379 (2020) 122362, doi:10.1016/j.cej.2019.122362.
- J. Li, Y. Ren, F.Z. Ji, B. Lai, Heterogeneous catalytic oxidation
for the degradation of p-nitrophenol in aqueous solution by
persulfate activated with CuFe2O4 magnetic nano-particles,
Chem. Eng. J., 324 (2017) 63–73.
- P.C. Guo, H.B. Qiu, C.W. Yang, X. Zhang, X.Y. Shai, Y.L. Lai,
G.P. Sheng, Highly efficient removal and detoxification of
phenolic compounds using persulfate activated by MnOx@OMC: synergistic mechanism and kinetic analysis, J. Hazard.
Mater., 402 (2021) 123846, doi: 10.1016/j.jhazmat.2020.123846.
- J. Romanos, M. Beckner, D. Stalla, A. Tekeei, G. Suppes,
S. Jalisatgi, M. Lee, F. Hawthorne, J.D. Robertson,
L. Fielej,
B. Kuchta, C. Wexler, P. Yu, P. Pfeifer, Infrared study of boron–
carbon chemical bonds in
boron-doped activated carbon,
Carbon, 54 (2013) 208–214.
- A.Q. Chen, S.J. Xia, Z.G. Ji, H.W. Lu, Insights into the origin
of super-high oxygen evolution potential of Cu doped SnO2
anodes: a theoretical study, Appl. Surf. Sci., 471 (2019) 149–153.
- M. Moradi, Y. Vasseghian, A. Khataee, M. Harati, H. Arfaeinia,
Ultrasound‐assisted synthesis of FeTiO3/GO nanocomposite
for photocatalytic degradation of phenol under visible light
irradiation, Sep. Purif. Technol., 261 (2021) 118274, doi: 10.1016/j.seppur.2020.118274.
- Rahmi, Lelifajri, R. Nurfatimah, Preparation of polyethylene
glycol diglycidyl ether (PEDGE) crosslinked chitosan/activated
carbon composite film for Cd2+ removal, Carbohydr. Polym.,
199 (2018) 499–505.
- L.P. Fang, K. Liu, F.B. Li, W.B. Zeng, Z.B. Hong, L. Xu,
Q.T. Shi, Y.B. Ma, New insights into stoichiometric efficiency
and synergistic mechanism of persulfate activation by
zero-valent bimetal (iron/copper) for organic pollutant
degradation, J. Hazard. Mater., 403 (2021) 123669, doi: 10.1016/j.jhazmat.2020.123669.
- J. Wang, X.Y. Xu, Q.J. Zhong, Z.B. Xu, L. Zhao, H. Qiu, X.D. Gao,
Roles of the mineral constituents in
sludge-derived biochar in
persulfate activation for phenol degradation, J. Hazard. Mater.,
398 (2020) 122861, doi:10.1016/j.jhazmat.2020.122861.
- C. Li, V. Goetz, S. Chiron, Peroxydisulfate activation process
on copper oxide: Cu(III) as the predominant selective
intermediate oxidant for phenol and waterborne antibiotics
removal, J. Environ. Chem. Eng., 9 (2021) 105145, doi: 10.1016/j.jece.2021.105145.
- W.C. Yang, X.M. Li, D.D. Xi, Q. Li, Z.H. Yang, X.B. Min,
Synergistic chromium(VI) reduction and phenol oxidative
degradation by FeS2/Fe0 and persulfate, Chemosphere,
281 (2021) 130957, doi:10.1016/j.chemosphere.2021.130957.
- Y. Zhao, M. Song, Q. Cao, P.Z. Sun, Y.H. Chen, F,Y. Meng,
The superoxide radicals’ production via persulfate activated
with CuFe2O4@biochar composites to promote the redox pairs
cycling for efficient degradation of o-nitrochlorobenzene
in soil, J. Hazard. Mater., 400 (2020) 122887, doi: 10.1016/j.
jhazmat.2020.122887.
- C.D. Qi, X.T. Liu, J. Ma, C.Y. Lin, X.W. Li, H.J. Zhang, Activation
of peroxymonosulfate by base: implications for the degradation
of organic pollutants, Chemosphere, 151 (2016) 280–288.
- S. Madihi-Bidgoli, S. Asadnezhad, A. Yaghoot-Nezhad,
A. Hassani, Azurobine degradation using Fe2O3@multiwalled
carbon nanotube activated peroxymonosulfate (PMS)
under UVA-LED irradiation: performance, mechanism and
environmental application, J. Environ. Chem. Eng., 9 (2021)
106660, doi:10.1016/j.jece.2021.106660.
- L.D. Lai, J.F. Yan, J. Li and B. Lai, Co/Al2O3-EPM as
peroxymonosulfate activator for sulfamethoxazole removal:
performance, biotoxicity, degradation pathways and
mechanism, Chem. Eng. J., 343 (2018) 676–688.
- X.J. Li, F.Z. Liao, L.M. Ye, L.Z. Yeh, Controlled pyrolysis of
MIL-88A to prepare iron/carbon composites for synergistic
persulfate oxidation of phenol: catalytic performance and
mechanism, J. Hazard. Mater., 398 (2020) 122938, doi: 10.1016/j.
jhazmat.2020.122938.
- J.B. Peng, Z.X. Wang, S.Y. Wang, J. Liu, Y.Z. Zhang,
B.J. Wang, Z.M. Gong, M.J. Wang, H. Dong, J.L. Shi, H.J. Liu,
G.X. Yan, G.G. Liu, S.X. Gao, Z.G. Cao, Enhanced removal of
methylparaben mediated by cobalt/carbon nanotubes (Co/CNTs) activated peroxymonosulfate in chloride-containing
water: reaction kinetics, mechanisms and pathways, Chem.
Eng. J., 409 (2021) 128176, doi: 10.1016/j.cej.2020.128176.
- X.W. Huo, P. Zhou, J. Zhang, Y.X. Liu, X. Cheng, Y. Liu, W.S. Li,
Y.L. Zhang, N, S-Doped porous carbons for persulfate activation
to remove tetracycline: nonradical mechanism, J. Hazard.
Mater., 391 (2020) 122055, doi: 10.1016/j.jhazmat.2020.122055.
- Z.N. Tu, Y.M. Qi, R.J. Qu, X.S. Tang, Z.Y. Wang, Z.L. Huo,
Photochemical transformation of hexachlorobenzene (HCB)
in solid-water system: kinetics, mechanism and toxicity
evaluation, Chemosphere, 295 (2022) 133907, doi: 10.1016/j.chemosphere.2022.133907.
- J.C. Lyu, M. Ge, Z. Hu, C.S. Guo, One-pot synthesis of magnetic
CuO/Fe2O3/CuFe2O4 nanocomposite to activate persulfate for
levofloxacin removal: Investigation of efficiency, mechanism
and degradation route, Chem. Eng. J., 389 (2020) 4055–4067.
- Y.W. Shi, J.D. Zhu, H.W. Zhang, Activation of persulfate by
EDTA-2K-derived nitrogen-doped porous carbons for organic
contaminant removal: radical and non-radical pathways,
Chem. Eng. J., 386 (2020) 124009, doi:10.1016/j.cej.2019.124009.
- T. Zhang, H.B. Zhu, J.P. Croue, Production of sulfate radical
from peroxymonosulfate induced by a magnetically separable
CuFe2O4 spinel in water: efficiency, stability, and mechanism,
Environ. Sci. Technol., 47 (2013) 2784–2791.
- Z.L. Li, C.S. Guo, J.C. Lyu, Z. Hu, M. Ge, Tetracycline
degradation by persulfate activated with magnetic Cu/CuFe2O4
composite: efficiency, stability, mechanism and degradation
pathway, J. Hazard. Mater., 373 (2019) 85–96.
- X. Cheng, H.G. Guo, Y.L. Zhang, G.V. Korshin, B. Yang, Insights
into the mechanism of nonradical reactions of persulfate
activated by carbon nanotubes: activation performance and
structure-function relationship, Water Res., 157 (2019) 406–414.
- H. Zhang, Y. Liu, F. Jiang, X. Bai, H.J. Li, D. Lang, L. Wang,
B. Pan, Persulfate adsorption and activation by carbon structure
defects provided new insights into ofloxacin degradation by
biochar, Sci. Total. Environ., 806 (2022) 150968, doi: 10.1016/j.scitotenv.2021.150968.