References

  1. Y. Ghaffari, N.K. Gupta, J. Bae, K.S. Kim, Heterogeneous catalytic performance and stability of iron-loaded
    ZSM-5, zeolite-A, and silica for phenol degradation: a microscopic and spectroscopic approach, Catalysts, 9 (2019) 859, doi: 10.3390/catal9100859.
  2. C.M. Chen, X.Y. Yao, Q.X. Li, Q.H. Wang, J.H. Liang, S.M. Zhang, J. Meng, Z.Y. Liu, J.M. Deng, B.A. Yoza, Turf soil enhances treatment efficiency and performance of phenolic wastewater in an up-flow anaerobic sludge blanket reactor, Chemosphere, 204 (2018) 227–234.
  3. S.Q. Liu, Z.C. Zhang, F. Huang, Y.Z. Liu, L. Feng, J. Jiang, L.Q. Zhang, F. Qi, C. Liu, Carbonized polyaniline activated peroxymonosulfate (PMS) for phenol degradation: role of PMS adsorption and singlet oxygen generation, Appl. Catal., B, 286 (2021) 119921, doi: 10.1016/j.apcatb.2021.119921.
  4. D. Amado-Piña, G. Roa-Morales, C. Barrera-Díaz, P. Balderas-Hernandez, R. Romero, E. Martin del Campo,
    R. Natividad, Synergic effect of ozonation and electrochemical methods on oxidation and toxicity reduction: phenol degradation, Fuel, 198 (2017) 82–90.
  5. M. Alshabib, S.A. Onaizi, A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: current status and potential challenges, Sep. Purif. Technol., 219 (2019) 186–207.
  6. M.L. Han, J. Zhang, W. Chu, G.F. Zhou, J.H. Chen, Surfacemodified sewage sludge-derived carbonaceous catalyst as a persulfate activator for phenol degradation, Int. J. Environ. Res. Public Health., 17 (2020) 3286, doi:10.3390/ijerph17093286.
  7. W.H. Saputera, A.S. Putrie, A.A. Esmailpour, D. Sasongko, V. Suendo, R.R. Mukti, Technology advances in phenol removals: current progress and future perspectives, Catalysts, 11 (2021) 998, doi: 10.3390/catal11080998.
  8. J.L. Wang, S.Z. Wang, Reactive species in advanced oxidation processes: formation, identification and reaction mechanism, Chem. Eng. J., 401 (2020) 126158, doi: 10.1016/j.cej.2020.126158.
  9. H.Z. Wang, W.Q. Guo, B.H. Liu, Q.L. Wu, H.C. Luo, Q. Zhao, Q.S. Si, F. Sseguya, N.Q. Ren, Edge-nitrogenated biochar for efficient peroxydisulfate activation: an electron transfer mechanism, Water Res., 160 (2019) 405–414.
  10. H.J. Zhou, D.X. Lu, S.Q. Fang, C. Liu, Y.C. Chen, Y.Y. Hu, Q.J. Luo, Prompting direct single electron transfer to produce non-radical 1O2/H* by electro-activating peroxydisulfate process with core-shell cathode, J. Environ. Manage., 287 (2021) 112294, doi: 10.1016/j.jenvman.2021.112294.
  11. P. Ye, D.M. Wu, M.Y. Wang, Y. Wei, A.H. Xu, X.X. Li, Coating magnetic CuFe2O4 nanoparticles with OMS-2 for enhanced degradation of organic pollutants via peroxymonosulfate activation, Appl. Surf. Sci., 428 (2018) 131–139.
  12. Q.X. Zhao, Q.M. Mao, Y.Y. Zhou, J.H. Wei, X.C. Liu, J.Y. Yang, L. Luo, J.C. Zhang, H. Chen, H.B. Chen, L. Tang,
    Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: a review on heterogeneous catalysts and applications, Chemosphere, 189 (2017) 224–238.
  13. J.F. Yu, H.P. Feng, L. Tang, Y. Pang, G.M. Zeng, Y. Lu, H.R. Dong, J.J. Wang, Y.N. Liu, C.Y. Feng, J.J. Wang, B. Peng, S.J. Ye, Metal-free carbon materials for persulfate-based advanced oxidation process: microstructure, property and tailoring, Prog. Mater. Sci., 111 (2020) 100654, doi: 10.1016/j.pmatsci.2020.100654.
  14. Y. Li, R. Baghi, J. Filip, S. Islam, L. Hope-weeks, W.L. Yan, Activation of peroxydisulfate by ferrite materials for phenol degradation, ACS Sustainable Chem. Eng., 7 (2019) 8099–8108.
  15. G.Y. Chen, G.Y. Wu, N. Li, X.K. Lu, J.H. Zhao, M.T. He, B.B. Yan, H.Q. Zhang, X.G. Duan, S.B. Wang, Landfill leachate treatment by persulphate related advanced oxidation technologies, J. Hazard. Mater., 418 (2021) 126355, doi:10.1016/j.jhazmat.2021.126355.
  16. S.H. Chen, L.Y. Ma, Y.G. Du, W. Zhan, T.C. Zhang, D.Y. Du, Highly efficient degradation of rhodamine B by carbon nanotubes-activated persulfate, Sep. Purif. Technol., 256 (2021) 117788, doi:10.1016/j.seppur.2020.117788.
  17. X.W. Ao, W.J. Liu, W.J. Sun, M.Q. Cai, C. Yang, Z.D. Lu, C. Li, Medium pressure UV-activated peroxymonosulfate for ciprofloxacin degradation: kinetics, mechanism, and genotoxicity, Chem. Eng. J., 345 (2018) 87–97.
  18. M.M. Zhang, Y. Gong, N. Ma, X. Zhao, Promoted photoelectrocatalytic degradation of BPA with peroxymonosulfate on a MnFe2O4 modified carbon paper cathode, Chem. Eng. J., 399 (2020) 125088, doi:10.1016/j.cej.2020.125088.
  19. X.Q. Zhou, A. Jawad, M.Y. Luo, C.G. Luo, T.T. Zhang, H.B. Wang, J. Wang, S.L. Wang, Z.L. Chen, Z.Q. Chen, Regulating activation pathway of Cu/persulfate through the incorporation of unreducible metal oxides: pivotal role of surface oxygen vacancies, Appl. Catal., B, 286 (2021) 119914, doi:10.1016/j.apcatb.2021.119914.
  20. G.D. Fang, W.H. Wu, Y.M. Deng, D.W. Zhou, Homogenous activation of persulfate by different species of vanadium ions for PCBs degradation, Chem. Eng. J., 323 (2017) 84–95.
  21. X.L. Zhang, M.B. Feng, R.J. Qu, H. Liu, L.S. Wang, Z.Y. Wang, Catalytic degradation of diethyl phthalate in aqueous solution by persulfate activated with nano-scaled magnetic CuFe2O4/MWCNTs, Chem. Eng. J., 301 (2016) 1–11.
  22. J.L. Wang, S.C. Wang, Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants, Chem. Eng. J., 334 (2018) 1502–1517.
  23. T. Dippong, E.A. Levei, O. Cadar, Recent advances in synthesis and applications of MFe2O4 (M = Co, Cu, Mn, Ni, Zn) nanoparticles, Nanomaterials, 11 (2021) 1560, doi: 10.3390/nano11061560.
  24. J. Li, J.F. Yan, G. Yao, Y.H. Zhang, X. Li, B. Lai, Improving the degradation of atrazine in the three-dimensional (3D) electrochemical process using CuFe2O4 as both particle electrode and catalyst for persulfate activation, Chem. Eng. J., 361 (2019) 1317–1332.
  25. K. Guan, P.J. Zhou, J.Y. Zhang, L.L. Zhu, Catalytic degradation of Acid Orange 7 in water by persulfate activated with CuFe2O4@RSDBC, Mater. Res. Express, 7 (2020) 016529.
  26. B.Y. Wang, Q.Q. Li, Y. Lv, H.B. Fu, D.Y. Liu, Y.F Feng, H.F. Xie, H.X. Qu, Insights into the mechanism of peroxydisulfate activated by magnetic spinel CuFe2O4/SBC as a heterogeneous catalyst for bisphenol S degradation, Chem. Eng. J., 416 (2021) 129162, doi: 10.1016/j.cej.2021.129162.
  27. W.X. Qin, G.D. Fang, Y.J. Wang, D.M. Zhou, Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: key role of superoxide radicals, Chem. Eng. J., 348 (2018) 526–534.
  28. H.X. Zhang, Y.Y. Song, L.C. Nengzi, J.F. Gou, B. Li, X.W. Chen, Activation of persulfate by a novel magnetic
    CuFe2O4/Bi2O3 composite for lomefloxacin degradation, Chem. Eng. J., 379 (2020) 122362, doi:10.1016/j.cej.2019.122362.
  29. H. Lee, H.J. Lee, J. Jeong, J. Lee, N.B. Park, C. Lee, Activation of persulfates by carbon nanotubes: oxidation of organic compounds by nonradical mechanism, Chem. Eng. J., 266 (2015) 28–33.
  30. T. Zhang, Y. Chen, Y.R. Wang, J. Le Roux, Y. Yang, J. Croué, Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation, Environ. Sci. Technol., 48 (2014) 5868–5875.
  31. Y. Feng, C.Z. Liao, L.J. Kong, D.L. Wu, Y.M. Liu, P.H. Lee, K. Shih, Facile synthesis of highly reactive and stable Fe-doped g-C3N4 composites for peroxymonosulfate activation: a novel nonradical oxidation process, J. Hazard. Mater., 354 (2018) 63–71.
  32. X. Chen, W.D. Oh, T.T. Lim, Graphene- and CNTs-based carbocatalysts in persulfates activation: material design and catalytic mechanisms, Chem. Eng. J., 354 (2018) 941–976.
  33. P.F. Xiao, L. An, D.D. Wu, The use of carbon materials in persulfate-based advanced oxidation processes:
    a review, New Carbon Mater., 35 (2020) 667–683.
  34. A. Jawad, J. Lang, Z.W. Liao, A. Khan, J. Ifthikar, Z.A. Lv, A.J. Long, Z.L. Chen, Z.Q. Chen, Activation of persulfate by CuOx@Co-LDH: a novel heterogeneous system for contaminant degradation with broad pH window and controlled leaching, Chem. Eng. J., 335 (2018) 548–559.
  35. X.G. Duan, H.Q. Sun, M. Tade, S.B. Wang, Metal-free activation of persulfate by cubic mesoporous carbons for catalytic oxidation via radical and nonradical processes, Catal. Today, 307 (2018) 140–146.
  36. X.H. Ren, H.H. Guo, J.K. Feng, P.C. Si, L. Zhang, L.J. Ci, Synergic mechanism of adsorption and metal-free catalysis for phenol degradation by N-doped graphene aerogel, Chemosphere, 191 (2018) 389–399.
  37. P.F. Xue, J. Gao, Y.B. Bao, J.B. Wang, Q.Y. Li, C.F. Wu, An analysis of microstructural variations in carbon black modified by oxidation or ultrasound, Carbon, 49 (2011) 3346–3355.
  38. M.A. Fayidh, S. Kallary, P.A.S. Babu, M. Sivarajan, M. Sukumar, A rapid and miniaturized method for the selection of microbial phenol degraders using colourimetric microtitration, Curr. Microbiol., 70 (2015) 898–906.
  39. Environmental Protection Industry Standard HJ/T 399-2007, Water Quality-Determination of the Chemical Oxygen Demand-Fast Digestion-Spectrophotometric Method, Ministry of Ecology and Environment of the People’s Republic of China, 2007.
  40. C.J. Liang, C.F. Huang, N.H. Mohanty, R.M. Kurakalva, A rapid spectrophotometric determination of persulfate anion in ISCO, Chemosphere, 73 (2008) 1540–1543.
  41. H.X. Zhang, Y.Y. Song, L.C. Nengzi, J.F. Gou, B. Li, X.W. Cheng, Activation of persulfate by a novel magnetic CuFe2O4/Bi2O3 composite for lomefloxacin degradation, Chem. Eng. J., 379 (2020) 122362, doi:10.1016/j.cej.2019.122362.
  42. J. Li, Y. Ren, F.Z. Ji, B. Lai, Heterogeneous catalytic oxidation for the degradation of p-nitrophenol in aqueous solution by persulfate activated with CuFe2O4 magnetic nano-particles, Chem. Eng. J., 324 (2017) 63–73.
  43. P.C. Guo, H.B. Qiu, C.W. Yang, X. Zhang, X.Y. Shai, Y.L. Lai, G.P. Sheng, Highly efficient removal and detoxification of phenolic compounds using persulfate activated by MnOx@OMC: synergistic mechanism and kinetic analysis, J. Hazard. Mater., 402 (2021) 123846, doi: 10.1016/j.jhazmat.2020.123846.
  44. J. Romanos, M. Beckner, D. Stalla, A. Tekeei, G. Suppes, S. Jalisatgi, M. Lee, F. Hawthorne, J.D. Robertson,
    L. Fielej, B. Kuchta, C. Wexler, P. Yu, P. Pfeifer, Infrared study of boron– carbon chemical bonds in
    boron-doped activated carbon, Carbon, 54 (2013) 208–214.
  45. A.Q. Chen, S.J. Xia, Z.G. Ji, H.W. Lu, Insights into the origin of super-high oxygen evolution potential of Cu doped SnO2 anodes: a theoretical study, Appl. Surf. Sci., 471 (2019) 149–153.
  46. M. Moradi, Y. Vasseghian, A. Khataee, M. Harati, H. Arfaeinia, Ultrasound‐assisted synthesis of FeTiO3/GO nanocomposite for photocatalytic degradation of phenol under visible light irradiation, Sep. Purif. Technol., 261 (2021) 118274, doi: 10.1016/j.seppur.2020.118274.
  47. Rahmi, Lelifajri, R. Nurfatimah, Preparation of polyethylene glycol diglycidyl ether (PEDGE) crosslinked chitosan/activated carbon composite film for Cd2+ removal, Carbohydr. Polym., 199 (2018) 499–505.
  48. L.P. Fang, K. Liu, F.B. Li, W.B. Zeng, Z.B. Hong, L. Xu, Q.T. Shi, Y.B. Ma, New insights into stoichiometric efficiency and synergistic mechanism of persulfate activation by zero-valent bimetal (iron/copper) for organic pollutant degradation, J. Hazard. Mater., 403 (2021) 123669, doi: 10.1016/j.jhazmat.2020.123669.
  49. J. Wang, X.Y. Xu, Q.J. Zhong, Z.B. Xu, L. Zhao, H. Qiu, X.D. Gao, Roles of the mineral constituents in
    sludge-derived biochar in persulfate activation for phenol degradation, J. Hazard. Mater., 398 (2020) 122861, doi:10.1016/j.jhazmat.2020.122861.
  50. C. Li, V. Goetz, S. Chiron, Peroxydisulfate activation process on copper oxide: Cu(III) as the predominant selective intermediate oxidant for phenol and waterborne antibiotics removal, J. Environ. Chem. Eng., 9 (2021) 105145, doi: 10.1016/j.jece.2021.105145.
  51. W.C. Yang, X.M. Li, D.D. Xi, Q. Li, Z.H. Yang, X.B. Min, Synergistic chromium(VI) reduction and phenol oxidative degradation by FeS2/Fe0 and persulfate, Chemosphere, 281 (2021) 130957, doi:10.1016/j.chemosphere.2021.130957.
  52. Y. Zhao, M. Song, Q. Cao, P.Z. Sun, Y.H. Chen, F,Y. Meng, The superoxide radicals’ production via persulfate activated with CuFe2O4@biochar composites to promote the redox pairs cycling for efficient degradation of o-nitrochlorobenzene in soil, J. Hazard. Mater., 400 (2020) 122887, doi: 10.1016/j. jhazmat.2020.122887.
  53. C.D. Qi, X.T. Liu, J. Ma, C.Y. Lin, X.W. Li, H.J. Zhang, Activation of peroxymonosulfate by base: implications for the degradation of organic pollutants, Chemosphere, 151 (2016) 280–288.
  54. S. Madihi-Bidgoli, S. Asadnezhad, A. Yaghoot-Nezhad, A. Hassani, Azurobine degradation using Fe2O3@multiwalled carbon nanotube activated peroxymonosulfate (PMS) under UVA-LED irradiation: performance, mechanism and environmental application, J. Environ. Chem. Eng., 9 (2021) 106660, doi:10.1016/j.jece.2021.106660.
  55. L.D. Lai, J.F. Yan, J. Li and B. Lai, Co/Al2O3-EPM as peroxymonosulfate activator for sulfamethoxazole removal: performance, biotoxicity, degradation pathways and mechanism, Chem. Eng. J., 343 (2018) 676–688.
  56. X.J. Li, F.Z. Liao, L.M. Ye, L.Z. Yeh, Controlled pyrolysis of MIL-88A to prepare iron/carbon composites for synergistic persulfate oxidation of phenol: catalytic performance and mechanism, J. Hazard. Mater., 398 (2020) 122938, doi: 10.1016/j. jhazmat.2020.122938.
  57. J.B. Peng, Z.X. Wang, S.Y. Wang, J. Liu, Y.Z. Zhang, B.J. Wang, Z.M. Gong, M.J. Wang, H. Dong, J.L. Shi, H.J. Liu,
    G.X. Yan, G.G. Liu, S.X. Gao, Z.G. Cao, Enhanced removal of methylparaben mediated by cobalt/carbon nanotubes (Co/CNTs) activated peroxymonosulfate in chloride-containing water: reaction kinetics, mechanisms and pathways, Chem. Eng. J., 409 (2021) 128176, doi: 10.1016/j.cej.2020.128176.
  58. X.W. Huo, P. Zhou, J. Zhang, Y.X. Liu, X. Cheng, Y. Liu, W.S. Li, Y.L. Zhang, N, S-Doped porous carbons for persulfate activation to remove tetracycline: nonradical mechanism, J. Hazard. Mater., 391 (2020) 122055, doi: 10.1016/j.jhazmat.2020.122055.
  59. Z.N. Tu, Y.M. Qi, R.J. Qu, X.S. Tang, Z.Y. Wang, Z.L. Huo, Photochemical transformation of hexachlorobenzene (HCB) in solid-water system: kinetics, mechanism and toxicity evaluation, Chemosphere, 295 (2022) 133907, doi: 10.1016/j.chemosphere.2022.133907.
  60. J.C. Lyu, M. Ge, Z. Hu, C.S. Guo, One-pot synthesis of magnetic CuO/Fe2O3/CuFe2O4 nanocomposite to activate persulfate for levofloxacin removal: Investigation of efficiency, mechanism and degradation route, Chem. Eng. J., 389 (2020) 4055–4067.
  61. Y.W. Shi, J.D. Zhu, H.W. Zhang, Activation of persulfate by EDTA-2K-derived nitrogen-doped porous carbons for organic contaminant removal: radical and non-radical pathways, Chem. Eng. J., 386 (2020) 124009, doi:10.1016/j.cej.2019.124009.
  62. T. Zhang, H.B. Zhu, J.P. Croue, Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: efficiency, stability, and mechanism, Environ. Sci. Technol., 47 (2013) 2784–2791.
  63. Z.L. Li, C.S. Guo, J.C. Lyu, Z. Hu, M. Ge, Tetracycline degradation by persulfate activated with magnetic Cu/CuFe2O4 composite: efficiency, stability, mechanism and degradation pathway, J. Hazard. Mater., 373 (2019) 85–96.
  64. X. Cheng, H.G. Guo, Y.L. Zhang, G.V. Korshin, B. Yang, Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: activation performance and structure-function relationship, Water Res., 157 (2019) 406–414.
  65. H. Zhang, Y. Liu, F. Jiang, X. Bai, H.J. Li, D. Lang, L. Wang, B. Pan, Persulfate adsorption and activation by carbon structure defects provided new insights into ofloxacin degradation by biochar, Sci. Total. Environ., 806 (2022) 150968, doi: 10.1016/j.scitotenv.2021.150968.