References

  1. M. Levy, B.-S. Leclerc, Fluoride in drinking water and osteosarcoma incidence rates in the continental United States among children and adolescents, Cancer Epidemiol., 36 (2012) e83–e88.
  2. J. Fawell, K. Bailey, J. Chilton, E. Dahi, L. Fewtrell, Y. Magara, Fluoride in Drinking-Water, World Health Organization, IWA Publishing, London, 2006.
  3. C. Castel, M. Schweizer, M.O. Simonnot, M. Sardin, Selective removal of fluoride ions by a two-way ion-exchange cyclic process, Chem. Eng. Sci., 55 (2000) 3341–3352.
  4. D. Eunice Jayashree, G. Pooja, P. Senthil Kumar, G. Prasannamedha, A review on fluoride: treatment strategies and scope for further research, Desal. Water Treat., 200 (2020) 167–186.
  5. W. Kim, R. Singh, J.A. Smith, Modified crushed oyster shells for fluoride removal from water, Sci. Rep., 10 (2020) 5759, doi: 10.1038/s41598-020-60743-7.
  6. A. Abri, M. Tajbakhsh, A. Sadeghi, Adsorption of fluoride on a chitosan-based magnetic nanocomposite: equilibrium and kinetics studies, Water Supply, 19 (2019) 40–51.
  7. A. Bhatnagar, E. Kumar, M. Sillanpää, Fluoride removal from water by adsorption-a review, Chem. Eng. J., 171 (2011) 811–840.
  8. V.K. Gupta, D. Pathania, S. Agarwal, P. Singh, Adsorptional photocatalytic degradation of methylene blue onto pectin-CuS nanocomposite under solar light, J. Hazard. Mater., 243 (2012) 179–186.
  9. A. Behzadnezhad, T. Ebadi, S. Taheri, E. Kowsari, Batch adsorption of methyl tert-butyl ether (MTBE) from aqueous solution by combined CNT and zeolite, Desal. Water Treat., 191 (2020) 213–220.
  10. M. Al-Shannag, Z. Al-Qodah, M. Nawasreh, Z. Al-Hamamreh, K. Bani-Melhem, M. Alkasrawi, On the performance of Ballota undulata biomass for the removal of cadmium(II) ions from water, Desal. Water Treat., 67 (2017) 223–230.
  11. A. Sano, M. Takaoka, K. Shiota, Vapor-phase elemental mercury adsorption by activated carbon co-impregnated with sulfur and chlorine, Chem. Eng. J., 315 (2017) 598–607.
  12. D. Unlu, Recovery of cutting oil from wastewater by pervaporation process using natural clay modified PVA membrane, Water Sci. Technol., 80 (2019) 2404–2411.
  13. H. Agougui, M. Jabli, H. Majdoub, Synthesis, characterization of hydroxyapatite-lambda carrageenan, and evaluation of its performance for the adsorption of methylene blue from aqueous suspension, J. Appl. Polym. Sci., 134 (2017) 45385, doi: 10.1002/app.45385.
  14. L. Cui, L. Hu, X. Guo, Y. Zhang, Y. Wang, Q. Wei, B. Du, Kinetic, isotherm and thermodynamic investigations of Cu2+ adsorption onto magnesium hydroxyapatite/ferroferric oxide nanocomposites with easy magnetic separation assistance, J. Mol. Liq., 198 (2014) 157–163.
  15. J. Kim, N.S. Sambudi, K. Cho, Removal of Sr2+ using high surface area hydroxyapatite synthesized by non-additive in-situ precipitation, J. Environ. Manage., 231 (2019) 788–794.
  16. Y. Si, J. Huo, H. Yin, A. Wang, Adsorption kinetics, isotherms, and thermodynamics of Cr(III), Pb(II), and Cu(II) on porous hydroxyapatite nanoparticles, J. Nanosci. Nanotechnol., 18 (2018) 3484–3491.
  17. Z. Chen, Y. Liu, L. Mao, L. Gong, W. Sun, L. Feng, Effect of cation doping on the structure of hydroxyapatite and the mechanism of defluoridation, Ceram. Int., 44 (2018) 6002–6009.
  18. P. Mondal, D. Mehta, S. George, Defluoridation studies with synthesized magnesium-incorporated hydroxyapatite and parameter optimization using response surface methodology, Desal. Water Treat., 57 (2016) 27294–27313.
  19. P. Ramakrishnan, S. Nagarajan, V. Thiruvenkatam, T. Palanisami, R. Naidu, M. Mallavarapu, S. Rajendran, Cation doped hydroxyapatite nanoparticles enhance strontium adsorption from aqueous system: a comparative study with and without calcination, Appl. Clay Sci., 134 (2016) 136–144.
  20. J. He, K. Chen, X. Cai, Y. Li, C. Wang, K. Zhang, Z. Jin, F. Meng, X. Wang, L. Kong, J. Liu, A biocompatible and novelly-defined Al-HAP adsorption membrane for highly effective removal of fluoride from drinking water,
    J. Colloid Interface Sci., 490 (2017) 97–107.
  21. Y. Wang, L. Hu, G. Zhang, T. Yan, L. Yan, Q. Wei, B. Du, Removal of Pb(II) and methylene blue from aqueous solution by magnetic hydroxyapatite-immobilized oxidized multiwalled carbon nanotubes, J. Colloid Interface Sci., 494 (2017) 380–388.
  22. F. Xue, B. Wang, M. Chen, C. Yi, S. Ju, W. Xing, Fe3O4-doped lithium ion-sieves for lithium adsorption and magnetic separation, Sep. Purif. Technol., 228 (2019) 115750, doi: 10.1016/j.seppur.2019.115750.
  23. D. Bhardwaj, R. Singh, Green biomimetic synthesis of Ag–TiO2 nanocomposite using Origanum majorana leaf extract under sonication and their biological activities, Bioresour. Bioprocess., 8 (2021) 1, doi:10.1186/s40643-020-00357-z.
  24. W. Yang, X. Wu, Y. Dou, J. Chang, C. Xiang, J. Yu, J. Wang, X. Wang, B. Zhang, A human endogenous protein exerts multi-role biomimetic chemistry in synthesis of paramagnetic gold nanostructures for tumor bimodal imaging, Biomaterials, 161 (2018) 256–269.
  25. P.T.S. Kumar, C. Ramya, R. Jayakumar, S.K.V. Nair, V.K. Lakshmanan, Drug delivery and tissue engineering applications of biocompatible pectin-chitin/nano CaCO3 composite scaffolds, Colloids Surf., B, 106 (2013) 109–116.
  26. J. Bok-Badura, A. Jakóbik-Kolon, K. Karoń, K. Mitko, Sorption studies of heavy metal ions on pectin-nano-titanium dioxide composite adsorbent, Sep. Sci. Technol., 53 (2018) 1034–1044.
  27. V.K. Gupta, D. Pathania, M. Asif, G. Sharma, Liquid phase synthesis of pectin–cadmium sulfide nanocomposite and its photocatalytic and antibacterial activity, J. Mol. Liq., 196 (2014) 107–112.
  28. N.V. Ivanova, N.N. Trofimova, V.A. Babkin, Larch bark pectinic polysaccharide as Ag (0) nanoparticle stabilizing matrix, Chem. Nat. Compd., 50 (2014) 60–64.
  29. K. Nigoghossian, M.V. Santos, H.S. Barud, R.R. Silva, L.A. Rocha, J.M.A. Caiut, R.M.N. Assunção, L. Spanhel,
    M. Poulain, Y. Messaddeq, S.J.L. Ribeiro, Orange pectin mediated growth and stability of aqueous gold and silver nanocolloids, Appl. Surf. Sci., 341 (2015) 28–36.
  30. L. Ai, Y. Zeng, Hierarchical porous NiO architectures as highly recyclable adsorbents for effective removal of organic dye from aqueous solution, Chem. Eng. J., 215–216 (2013) 269–278.
  31. X. Zhao, J. Wang, F. Wu, T. Wang, Y. Cai, Y. Shi, G. Jiang, Removal of fluoride from aqueous media by
    Fe3O4@Al(OH)3 magnetic nanoparticles, J. Hazard. Mater., 173 (2010) 102–109.
  32. L. Gong, L. Feng, Preparation and defluorination mechanism of a novel copolymerized hydroxyapatite-aluminium chloride material, RSC Adv., 5 (2015) 95334–95343.
  33. Y.S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater., 136 (2006) 681–689.
  34. A. Phasuk, S. Srisantitham, T. Tuntulani, W. Anutrasakda, Facile synthesis of magnetic hydroxyapatite-supported nickel oxide nanocomposite and its dye adsorption characteristics, Adsorption, 24 (2018) 157–167.