References
- R. Daghrir, P. Drogui, Tetracycline antibiotics in the
environment: a review, Environ. Chem. Lett., 11 (2013) 209–227.
- B.M. Marshall, S.B. Levy, Food animals and antimicrobials:
impacts on human health, Clin. Microbiol. Rev., 24 (2011)
718–733.
- F. Baquero, J.-L. Martinez, R. Cantón, Antibiotics and antibiotic
resistance in water environments, Curr. Opin. Biotechnol.,
19 (2008) 260–265.
- X. Zhang, W. Guo, H.H. Ngo, H. Wen, N. Li, W. Wu, Performance
evaluation of powdered activated carbon for removing 28
types of antibiotics from water, J. Environ. Manage., 172 (2016)
193–200.
- L.L. Yan, Y. Liu, Y. Zhang, S. Liu, C. Wang, W. Chen, C. Liu,
Z. Chen, Y. Zhang, ZnCl2 modified biochar derived from
aerobic granular sludge for developed microporosity and
enhanced adsorption to tetracycline, Bioresour. Technol.,
297 (2020) 122381, doi: 10.1016/j.biortech.2019.122381.
- Y.F. Leng, J.G. Bao, G.F. Chang, H. Zheng, X. Li, J. Du, D. Snow,
X. Li, Biotransformation of tetracycline by a novel bacterial
strain Stenotrophomonas maltophilia DT1, J. Hazard. Mater.,
318 (2016) 125–133.
- A. Garcia-Rodríguez, V. Matamoros, S.D. Kolev, C.L. Font,
Development of a polymer inclusion membrane (PIM) for the
preconcentration of antibiotics in environmental water samples,
J. Membr. Sci., 492 (2015) 32–39.
- Y. Liu, H. Liu, Z. Zhou, T. Wang, C.N. Ong, C.D. Vecitis,
Degradation of the common aqueous antibiotic tetracycline
using a carbon nanotube electrochemical filter, Environ. Sci.
Technol., 49 (2015) 7974–7980.
- S. Zheng, X. Li, J. Zhang, J. Wang, C. Zhao, X. Hu, Y. Wu, Y. He, Onestep
preparation of MoOx/ZnS/ZnO composite and its excellent
performance in piezocatalytic degradation of Rhodamine B
under ultrasonic vibration, J. Environ. Sci., 125 (2023) 1–13.
- X. Li, J. Wang, J. Zhang, C. Zhao, Y. Wu, Y. He, Cadmium
sulfide modified zinc oxide heterojunction harvesting
ultrasonic mechanical energy for efficient decomposition of
dye wastewater, J. Colloid Interface Sci., 607 (2022) 412–422.
- L. Wang, J. Wang, C. Ye, K. Wang, C. Zhao, Y. Wu, Y. He,
Photodeposition of CoOx nanoparticles on BiFeO3 nanodisk
for efficiently piezocatalytic degradation of rhodamine B by
utilizing ultrasonic vibration energy, Ultrason. Sonochem.,
80 (2021) 105813, doi: 10.1016/j.ultsonch.2021.105813.
- Z. Li, Q. Zhang, L. Wang, J. Yang, Y. Wu, Y. He, Novel
application of Ag/PbBiO2I nanocomposite in piezocatalytic
degradation of rhodamine B via harvesting ultrasonic vibration
energy, Ultrason. Sonochem., 78 (2021) 105729, doi: 10.1016/j.ultsonch.2021.105729.
- Y. Li, H. Chen, L. Wang, T. Wu, Y. Wu, Y. He, KNbO3/ZnO
heterojunction harvesting ultrasonic mechanical energy and
solar energy to efficiently degrade methyl orange, Ultrason.
Sonochem., 78 (2021) 105754, doi:10.1016/j.ultsonch.2021.105754.
- K. Shu, F. Chen, W. Shi, F. Guo, Y. Tang, H. Ren, M. Li,
Construction of DyVO4/nitrogen deficient g-C3N4 composite for
enhanced visible-light photocatalytic activity for tetracycline
degradation, Mater. Res. Bull., 124 (2020) 110766–110774.
- X. Lu, Y. Wang, X. Zhang, G. Xu, D. Wang, J. Lv, Z. Zheng, Y. Wu,
NiS and MoS2 nanosheet co-modified graphitic C3N4 ternary
heterostructure for highly efficient visible light photodegradation
of antibiotic, J. Hazard. Mater., 341 (2018) 10–19.
- M.Y. Li, Y.B. Tang, W.L. Shi, F.Y. Chen, Y. Shi, H.C. Gu, Design of
visible-light-response core-shell Fe2O3/CuBi2O4 heterojunctions
with enhanced photocatalytic activity towards the degradation
of tetracycline: Z-scheme photocatalytic mechanism insight,
Inorg. Chem. Front., 5 (2018) 3148–3154.
- C. Liu, Y.B. Tang, P.W. Huo, F.Y. Chen, Novel AgCl/CNTs/g-C3N4 nanocomposite with high photocatalytic and antibacterial
activity, Mater. Lett., 257 (2019) 126708–126711.
- H.J. Ren, Y.B. Tang, W.L. Shi, F.Y. Chen, Y.S. Xu, Red mud
modified with graphene oxide for enhanced
visible-light-driven
photocatalytic performance towards the degradation
of antibiotics, New J. Chem., 43 (2019) 19172–19179.
- C. Liu, F.Y. Chen, Y.B. Tang, P.W. Huo, An environmentally
friendly nanocomposite polypyrrole@silver/reduced graphene
oxide with high catalytic activity for bacteria and antibiotics,
J. Mater. Sci.: Mater. Electron., 32 (2021) 15211–15225.
- C.C. Hao, Y.B. Tang, W.L. Shi, F.Y. Chen, F. Guo, Facile
solvothermal synthesis of a Z-Scheme 0D/3D
CeO2/ZnIn2S4
heterojunction with enhanced photocatalytic performance
under visible light irradiation, Chem. Eng. J., 409 (2021)
128168–128178.
- K. Shen, X.D. Chen, J.Y. Chen, Y.W. Li, Development of MOF-derived
carbon-based nanomaterials for efficient catalysis,
ACS Catal., 6 (2016) 5887–5903.
- Z. Ni, J.P. Jerrell, K.R. Cadwallader, R.I. Mase, Metal-organic
frameworks as adsorbents for trapping and preconcentration of
organic phosphonates, Anal. Chem., 79 (2007) 1290–1293.
- P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie,
T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz,
J.S. Chang, Y.K. Hwang, V. Marsaud, P.N. Bories, L. Cynober,
S. Gil, G. Ferey, P. Couvreur, R. Gref, Porous
metal-organic
framework nanoscale carriers as a potential platform for drug
delivery and imaging, Nat. Mater., 9 (2010) 172–178.
- D. Alezi, Y. Belmabkhout, M. Suyetin, P.M. Bhatt, L.J. Weselinski,
V. Solovyeva, K. Adil, I. Spanopoulos,
P.N. Trikalitis,
A.H. Emwas, M. Eddaoudi, MOF crystal chemistry paving the
way to gas storage needs: aluminum-based soc-MOF for CH4,
O2, and CO2 storage, J. Am. Chem. Soc., 137 (2015) 13308–13318.
- X. Zhou, W.Y. Huang, J.P. Miao, Q.B. Xia, Z.J. Zhang,
H.H. Wang, Enhanced separation performance of a novel composite
material GrO@MIL-101 for CO2/CH4 binary mixture,
Chem. Eng. J., 26 (2015) 6339–344.
- M. Wang, L. Guo, D.P. Cao, Metal-organic framework as
luminescence turn-on sensor for selective detection of
metal ions: absorbance caused enhancement mechanism,
Sens. Actuators, B, 256 (2018) 839–845.
- D. Wang, F. Jia, H. Wang, F. Chen, Y. Fang, W. Dong, G. Zeng,
X. Li, Q. Yang, X. Yuan, Simultaneously efficient adsorption and
photocatalytic degradation of tetracycline by Fe-based MOFs,
J. Colloid Interface Sci., 5 (2018) 273–284.
- J. Zhu, P.Z. Li, W. Guo, Y. Zhao, R. Zou, Titanium-based
metal-organic frameworks for photocatalytic applications,
Coord. Chem. Rev., 359 (2018) 80–101.
- A. Dhakshinamoorthy, Z. Li, H. Garcia, Catalysis and
photocatalysis by metal organic frameworks, Chem. Soc. Rev.,
47 (2018) 8134–8172.
- W. Huang, C. Jing, X. Zhang, M. Tang, L. Tang, M. Wu,
N. Liu, Integration of plasmonic effect into spindle-shaped
MIL-88A(Fe): steering charge flow for enhanced visiblelight
photocatalytic degradation of ibuprofen, Chem. Eng. J.,
349 (2018) 603–612.
- X. Zhang, N. Yuan, Y. Li, L. Han, Q. Wang, Fabrication of
new MIL-53(Fe)@TiO2 visible-light responsive adsorptive
photocatalysts for efficient elimination of tetracycline, Chem.
Eng. J., 428 (2021) 131077–131090.
- D. Wang, F. Jia, H. Wang, F. Chen, Y. Fang, W. Dong, G. Zeng,
X. Li, Q. Yang, X. Yuan, Simultaneously efficient adsorption and
photocatalytic degradation of tetracycline by Fe-based MOFs,
J. Colloid Interface Sci., 519 (2018) 273–284.
- N.V. Maksimchuk, O.V. Zalomaeva, I.Y. Skobelev,
K.A. Kovalenko, V.P. Fedin, O.A. Kholdeeva, Metal–organic
frameworks of the MIL-101 family as heterogeneous single-site
catalysts, Proc. R. Soc. A, 468 (2012) 2017–2034.
- C.C. Wang, X.D. Du, J. Li, X.X. Guo, P. Wang, J. Zhang,
Photocatalytic Cr(VI) reduction in metal-organic frameworks:
a mini-review, Appl. Catal., B, 193 (2016) 198–216.
- C.C. Wang, X.H. Yi, P. Wang, Powerful combination of
MOFs and C3N4 for enhanced photocatalytic performance,
Appl. Catal., B, 247 (2019) 24–48.
- F.Y. Chen, K. Bian, H.S. Li, Y.B. Tang, C.C. Hao, W. Shi, A novel
CeO2/MIL101(Fe) heterojunction for enhanced photocatalytic
degradation of tetracycline under visible-light irradiation,
J. Chem. Technol. Biotechnol., 97 (2022) 1884–1892.
- L. He, Y. Zhang, Y. Zheng, Q. Jia, S. Shan, Y. Dong, Degradation
of tetracycline by a novel MIL 101(Fe)/TiO2 composite with
persulfate, J. Porous Mater., 26 (2019) 1839–1850.
- Y. Gong, B. Yang, H. Zhang, X. Zhao, A g-C3N4/MIL-101(Fe)
heterostructure composite for highly efficient BPA degradation
with persulfate under visible light irradiation, J. Mater.
Chem. A, 6 (2018) 23703–23711.
- J. Huang, H. Song, C. Chen, Y. Yang, N. Xu, X. Ji, C. Li, J.A. You,
Facile synthesis of N-doped TiO2 nanoparticles caged in
MIL-100(Fe) for photocatalytic degradation of organic dyes under
visible light irradiation, J. Environ. Chem. Eng., 5 (2017)
2579–2585.
- D. Yan, H. Hu, N. Gao, J. Ye, H. Ou, Fabrication of carbon
nanotube functionalized MIL-101(Fe) for enhanced visible-light
photocatalysis of ciprofloxacin in aqueous solution, Appl. Surf.
Sci., 498 (2019) 143836–143844.
- N. Liu, M. Tang, J. Wu, L. Tang, L. Wang, Boosting visible-light
photocatalytic performance for CO2 reduction via hydroxylated
graphene quantum dots sensitized MIL-101(Fe), Adv. Mater.
Interfaces, 7 (2020) 2000468–2000478.
- J. Lin, H. Hu, N. Gao, J. Ye, Y. Chen, H. Ou, Fabrication of
GO@MIL-101(Fe) for enhanced visible-light photocatalysis
degradation of organophosphorus contaminant, J. Water
Process Eng., 33 (2020) 101010–101018.
- F.Y. Chen, L. Cheng, Y.B. Tang, K.K. Shu, W.L. Shi, Construction
of Z-scheme heterojunction
g-C3N4/CQDs/InVO4 with broadspectrum
response for efficient rhodamine B degradation and
H2 evolution under visible light, J. Chem. Technol. Biotechnol.,
96 (2021) 3074–3083.
- Y. Liu, C. Liu, C. Shi, W. Sun, X. Lin, W. Shi, Y. Hong,
Carbon-based quantum dots (CQDs) modified ms/tz-BiVO4
heterojunction with enhanced photocatalytic performance
for water purification, J. Alloys Compd., 881 (2021) 160437,
doi: 10.1016/j.jallcom.2021.160437.
- W. Sun, S. Yang, Y. Liu, C. Shi, W. Shi, X. Lin, F. Guo,
Y. Hong, Fabricating nitrogen-doped carbon dots (NCDs)
on Bi3.64Mo0.36O6.55 nanospheres: a nanoheterostructure for
enhanced photocatalytic performance for water purification,
J. Phys. Chem. Solids, 159 (2021) 110283, doi: 10.1016/j.jpcs.2021.110283.
- W. Shi, W. Sun, Y. Liu, X. Li, X. Lin, F. Guo, Y. Hong, Onionring-like g-C3N4 modified with Bi3TaO7 quantum dots: a novel
0D/3D S-scheme heterojunction for enhanced photocatalytic
hydrogen production under visible light irradiation,
Renewable Energy, 182 (2022) 958–968.
- Z. Li, G. Che, W. Jiang, L. Liu, H. Wang, Visible-light-driven
CQDs@MIL-125(Ti) nanocomposite photocatalyst with
enhanced photocatalytic activity for the degradation of
tetracycline, RSC Adv., 9 (2019) 33238–33245.
- L. He, Y. Dong, Y. Zheng, Q. Jia, S. Shan, Y. Zhang, A novel
magnetic MIL-101(Fe)/TiO2 composite for photo degradation
of tetracycline under solar light, J. Hazard. Mater., 361 (2019)
85–94.
- C. Wang, X. Liu, N. Keser Demir, J.P. Chen, K. Li, Applications
of water stable metal–organic frameworks, Chem. Soc. Rev.,
45 (2016) 5107–5134.
- D. Pattappan, S. Vargheese, K.V. Kavya, R.T. Rajendra Kumar,
Y. Haldorai, Metal-organic frameworks with different oxidation
states of metal nodes and aminoterephthalic acid ligand for
degradation of Rhodamine B under solar light, Chemosphere,
286 (2022) 131726, doi: 10.1016/j.chemosphere.2021.131726.
- F.Y. Chen, X. Zhang, Y.B. Tang, X.G. Wang, K.K. Shu, Facile and
rapid synthesis of a novel spindle-like heterojunction BiVO4
showing enhanced visible-light-driven photoactivity, RSC Adv.,
10 (2020) 5234–5240.
- L. Cheng, F.Y. Chen, Z.Q. Zhu, Y.B. Tang, K.K. Shu, W.L. Shi,
Vacancy-modified g-C3N4 nanosheets via one-step thermal
polymerization of thiosemicarbazide precursor for visible-light-driven photocatalytic activity, Mater. Chem. Phys.,
275 (2022) 125192–125202.
- X. Zhang, F.Y. Chen, Y.B. Tang, Y.M. Liu, X.G. Wang, A rapid
microwave synthesis of nanoscale
BiVO4/Bi2O3@SiO2 with large
specific surface area and excellent visible-light-driven activity,
Desal. Water Treat., 152 (2019) 99–107.
- F.Y. Chen, M.K. He, Y.B. Tang, C.Y. He, K.K. Shu, M.Y. Li, A facile
vapor deposition synthesis of g-C3N4/SiO2 nanocomposite with
large specific surface area and enhanced photocatalytic activity,
Desal. Water Treat., 196 (2020) 247–255.
- N. Liu, W. Huang, M. Tang, C. Yin, B. Gao, Z. Li, L. Tang, J. Lei,
L. Cui, X. Zhang, In-situ fabrication of
needle-shaped MIL-53(Fe) with 1T-MoS2 and study on its enhanced photocatalytic
mechanism of ibuprofen, Chem. Eng. J., 359 (2019) 254–264.
- J. Low, L. Zhang, T. Tong, L. Wu, J. Lu, TiO2/MXene Ti3C2
composite with excellent photocatalytic CO2 reduction activity,
J. Catal., 361 (2018) 255–266.