References

  1. R. Daghrir, P. Drogui, Tetracycline antibiotics in the environment: a review, Environ. Chem. Lett., 11 (2013) 209–227.
  2. B.M. Marshall, S.B. Levy, Food animals and antimicrobials: impacts on human health, Clin. Microbiol. Rev., 24 (2011) 718–733.
  3. F. Baquero, J.-L. Martinez, R. Cantón, Antibiotics and antibiotic resistance in water environments, Curr. Opin. Biotechnol., 19 (2008) 260–265.
  4. X. Zhang, W. Guo, H.H. Ngo, H. Wen, N. Li, W. Wu, Performance evaluation of powdered activated carbon for removing 28 types of antibiotics from water, J. Environ. Manage., 172 (2016) 193–200.
  5. L.L. Yan, Y. Liu, Y. Zhang, S. Liu, C. Wang, W. Chen, C. Liu, Z. Chen, Y. Zhang, ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline, Bioresour. Technol., 297 (2020) 122381, doi: 10.1016/j.biortech.2019.122381.
  6. Y.F. Leng, J.G. Bao, G.F. Chang, H. Zheng, X. Li, J. Du, D. Snow, X. Li, Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1, J. Hazard. Mater., 318 (2016) 125–133.
  7. A. Garcia-Rodríguez, V. Matamoros, S.D. Kolev, C.L. Font, Development of a polymer inclusion membrane (PIM) for the preconcentration of antibiotics in environmental water samples, J. Membr. Sci., 492 (2015) 32–39.
  8. Y. Liu, H. Liu, Z. Zhou, T. Wang, C.N. Ong, C.D. Vecitis, Degradation of the common aqueous antibiotic tetracycline using a carbon nanotube electrochemical filter, Environ. Sci. Technol., 49 (2015) 7974–7980.
  9. S. Zheng, X. Li, J. Zhang, J. Wang, C. Zhao, X. Hu, Y. Wu, Y. He, Onestep preparation of MoOx/ZnS/ZnO composite and its excellent performance in piezocatalytic degradation of Rhodamine B under ultrasonic vibration, J. Environ. Sci., 125 (2023) 1–13.
  10. X. Li, J. Wang, J. Zhang, C. Zhao, Y. Wu, Y. He, Cadmium sulfide modified zinc oxide heterojunction harvesting ultrasonic mechanical energy for efficient decomposition of dye wastewater, J. Colloid Interface Sci., 607 (2022) 412–422.
  11. L. Wang, J. Wang, C. Ye, K. Wang, C. Zhao, Y. Wu, Y. He, Photodeposition of CoOx nanoparticles on BiFeO3 nanodisk for efficiently piezocatalytic degradation of rhodamine B by utilizing ultrasonic vibration energy, Ultrason. Sonochem., 80 (2021) 105813, doi: 10.1016/j.ultsonch.2021.105813.
  12. Z. Li, Q. Zhang, L. Wang, J. Yang, Y. Wu, Y. He, Novel application of Ag/PbBiO2I nanocomposite in piezocatalytic degradation of rhodamine B via harvesting ultrasonic vibration energy, Ultrason. Sonochem., 78 (2021) 105729, doi: 10.1016/j.ultsonch.2021.105729.
  13. Y. Li, H. Chen, L. Wang, T. Wu, Y. Wu, Y. He, KNbO3/ZnO heterojunction harvesting ultrasonic mechanical energy and solar energy to efficiently degrade methyl orange, Ultrason. Sonochem., 78 (2021) 105754, doi:10.1016/j.ultsonch.2021.105754.
  14. K. Shu, F. Chen, W. Shi, F. Guo, Y. Tang, H. Ren, M. Li, Construction of DyVO4/nitrogen deficient g-C3N4 composite for enhanced visible-light photocatalytic activity for tetracycline degradation, Mater. Res. Bull., 124 (2020) 110766–110774.
  15. X. Lu, Y. Wang, X. Zhang, G. Xu, D. Wang, J. Lv, Z. Zheng, Y. Wu, NiS and MoS2 nanosheet co-modified graphitic C3N4 ternary heterostructure for highly efficient visible light photodegradation of antibiotic, J. Hazard. Mater., 341 (2018) 10–19.
  16. M.Y. Li, Y.B. Tang, W.L. Shi, F.Y. Chen, Y. Shi, H.C. Gu, Design of visible-light-response core-shell Fe2O3/CuBi2O4 heterojunctions with enhanced photocatalytic activity towards the degradation of tetracycline: Z-scheme photocatalytic mechanism insight, Inorg. Chem. Front., 5 (2018) 3148–3154.
  17. C. Liu, Y.B. Tang, P.W. Huo, F.Y. Chen, Novel AgCl/CNTs/g-C3N4 nanocomposite with high photocatalytic and antibacterial activity, Mater. Lett., 257 (2019) 126708–126711.
  18. H.J. Ren, Y.B. Tang, W.L. Shi, F.Y. Chen, Y.S. Xu, Red mud modified with graphene oxide for enhanced
    visible-light-driven photocatalytic performance towards the degradation of antibiotics, New J. Chem., 43 (2019) 19172–19179.
  19. C. Liu, F.Y. Chen, Y.B. Tang, P.W. Huo, An environmentally friendly nanocomposite polypyrrole@silver/reduced graphene oxide with high catalytic activity for bacteria and antibiotics, J. Mater. Sci.: Mater. Electron., 32 (2021) 15211–15225.
  20. C.C. Hao, Y.B. Tang, W.L. Shi, F.Y. Chen, F. Guo, Facile solvothermal synthesis of a Z-Scheme 0D/3D
    CeO2/ZnIn2S4 heterojunction with enhanced photocatalytic performance under visible light irradiation, Chem. Eng. J., 409 (2021) 128168–128178.
  21. K. Shen, X.D. Chen, J.Y. Chen, Y.W. Li, Development of MOF-derived carbon-based nanomaterials for efficient catalysis, ACS Catal., 6 (2016) 5887–5903.
  22. Z. Ni, J.P. Jerrell, K.R. Cadwallader, R.I. Mase, Metal-organic frameworks as adsorbents for trapping and preconcentration of organic phosphonates, Anal. Chem., 79 (2007) 1290–1293.
  23. P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz,
    J.S. Chang, Y.K. Hwang, V. Marsaud, P.N. Bories, L. Cynober, S. Gil, G. Ferey, P. Couvreur, R. Gref, Porous
    metal-organic framework nanoscale carriers as a potential platform for drug delivery and imaging, Nat. Mater., 9 (2010) 172–178.
  24. D. Alezi, Y. Belmabkhout, M. Suyetin, P.M. Bhatt, L.J. Weselinski, V. Solovyeva, K. Adil, I. Spanopoulos,
    P.N. Trikalitis, A.H. Emwas, M. Eddaoudi, MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage, J. Am. Chem. Soc., 137 (2015) 13308–13318.
  25. X. Zhou, W.Y. Huang, J.P. Miao, Q.B. Xia, Z.J. Zhang, H.H. Wang, Enhanced separation performance of a novel composite material GrO@MIL-101 for CO2/CH4 binary mixture, Chem. Eng. J., 26 (2015) 6339–344.
  26. M. Wang, L. Guo, D.P. Cao, Metal-organic framework as luminescence turn-on sensor for selective detection of metal ions: absorbance caused enhancement mechanism, Sens. Actuators, B, 256 (2018) 839–845.
  27. D. Wang, F. Jia, H. Wang, F. Chen, Y. Fang, W. Dong, G. Zeng, X. Li, Q. Yang, X. Yuan, Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs, J. Colloid Interface Sci., 5 (2018) 273–284.
  28. J. Zhu, P.Z. Li, W. Guo, Y. Zhao, R. Zou, Titanium-based metal-organic frameworks for photocatalytic applications, Coord. Chem. Rev., 359 (2018) 80–101.
  29. A. Dhakshinamoorthy, Z. Li, H. Garcia, Catalysis and photocatalysis by metal organic frameworks, Chem. Soc. Rev., 47 (2018) 8134–8172.
  30. W. Huang, C. Jing, X. Zhang, M. Tang, L. Tang, M. Wu, N. Liu, Integration of plasmonic effect into spindle-shaped MIL-88A(Fe): steering charge flow for enhanced visiblelight photocatalytic degradation of ibuprofen, Chem. Eng. J., 349 (2018) 603–612.
  31. X. Zhang, N. Yuan, Y. Li, L. Han, Q. Wang, Fabrication of new MIL-53(Fe)@TiO2 visible-light responsive adsorptive photocatalysts for efficient elimination of tetracycline, Chem. Eng. J., 428 (2021) 131077–131090.
  32. D. Wang, F. Jia, H. Wang, F. Chen, Y. Fang, W. Dong, G. Zeng, X. Li, Q. Yang, X. Yuan, Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs, J. Colloid Interface Sci., 519 (2018) 273–284.
  33. N.V. Maksimchuk, O.V. Zalomaeva, I.Y. Skobelev, K.A. Kovalenko, V.P. Fedin, O.A. Kholdeeva, Metal–organic frameworks of the MIL-101 family as heterogeneous single-site catalysts, Proc. R. Soc. A, 468 (2012) 2017–2034.
  34. C.C. Wang, X.D. Du, J. Li, X.X. Guo, P. Wang, J. Zhang, Photocatalytic Cr(VI) reduction in metal-organic frameworks: a mini-review, Appl. Catal., B, 193 (2016) 198–216.
  35. C.C. Wang, X.H. Yi, P. Wang, Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance, Appl. Catal., B, 247 (2019) 24–48.
  36. F.Y. Chen, K. Bian, H.S. Li, Y.B. Tang, C.C. Hao, W. Shi, A novel CeO2/MIL101(Fe) heterojunction for enhanced photocatalytic degradation of tetracycline under visible-light irradiation, J. Chem. Technol. Biotechnol., 97 (2022) 1884–1892.
  37. L. He, Y. Zhang, Y. Zheng, Q. Jia, S. Shan, Y. Dong, Degradation of tetracycline by a novel MIL 101(Fe)/TiO2 composite with persulfate, J. Porous Mater., 26 (2019) 1839–1850.
  38. Y. Gong, B. Yang, H. Zhang, X. Zhao, A g-C3N4/MIL-101(Fe) heterostructure composite for highly efficient BPA degradation with persulfate under visible light irradiation, J. Mater. Chem. A, 6 (2018) 23703–23711.
  39. J. Huang, H. Song, C. Chen, Y. Yang, N. Xu, X. Ji, C. Li, J.A. You, Facile synthesis of N-doped TiO2 nanoparticles caged in MIL-100(Fe) for photocatalytic degradation of organic dyes under visible light irradiation, J. Environ. Chem. Eng., 5 (2017) 2579–2585.
  40. D. Yan, H. Hu, N. Gao, J. Ye, H. Ou, Fabrication of carbon nanotube functionalized MIL-101(Fe) for enhanced visible-light photocatalysis of ciprofloxacin in aqueous solution, Appl. Surf. Sci., 498 (2019) 143836–143844.
  41. N. Liu, M. Tang, J. Wu, L. Tang, L. Wang, Boosting visible-light photocatalytic performance for CO2 reduction via hydroxylated graphene quantum dots sensitized MIL-101(Fe), Adv. Mater. Interfaces, 7 (2020) 2000468–2000478.
  42. J. Lin, H. Hu, N. Gao, J. Ye, Y. Chen, H. Ou, Fabrication of GO@MIL-101(Fe) for enhanced visible-light photocatalysis degradation of organophosphorus contaminant, J. Water Process Eng., 33 (2020) 101010–101018.
  43. F.Y. Chen, L. Cheng, Y.B. Tang, K.K. Shu, W.L. Shi, Construction of Z-scheme heterojunction
    g-C3N4/CQDs/InVO4 with broadspectrum response for efficient rhodamine B degradation and H2 evolution under visible light, J. Chem. Technol. Biotechnol., 96 (2021) 3074–3083.
  44. Y. Liu, C. Liu, C. Shi, W. Sun, X. Lin, W. Shi, Y. Hong, Carbon-based quantum dots (CQDs) modified ms/tz-BiVO4 heterojunction with enhanced photocatalytic performance for water purification, J. Alloys Compd., 881 (2021) 160437, doi: 10.1016/j.jallcom.2021.160437.
  45. W. Sun, S. Yang, Y. Liu, C. Shi, W. Shi, X. Lin, F. Guo, Y. Hong, Fabricating nitrogen-doped carbon dots (NCDs) on Bi3.64Mo0.36O6.55 nanospheres: a nanoheterostructure for enhanced photocatalytic performance for water purification, J. Phys. Chem. Solids, 159 (2021) 110283, doi: 10.1016/j.jpcs.2021.110283.
  46. W. Shi, W. Sun, Y. Liu, X. Li, X. Lin, F. Guo, Y. Hong, Onionring-like g-C3N4 modified with Bi3TaO7 quantum dots: a novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation, Renewable Energy, 182 (2022) 958–968.
  47. Z. Li, G. Che, W. Jiang, L. Liu, H. Wang, Visible-light-driven CQDs@MIL-125(Ti) nanocomposite photocatalyst with enhanced photocatalytic activity for the degradation of tetracycline, RSC Adv., 9 (2019) 33238–33245.
  48. L. He, Y. Dong, Y. Zheng, Q. Jia, S. Shan, Y. Zhang, A novel magnetic MIL-101(Fe)/TiO2 composite for photo degradation of tetracycline under solar light, J. Hazard. Mater., 361 (2019) 85–94.
  49. C. Wang, X. Liu, N. Keser Demir, J.P. Chen, K. Li, Applications of water stable metal–organic frameworks, Chem. Soc. Rev., 45 (2016) 5107–5134.
  50. D. Pattappan, S. Vargheese, K.V. Kavya, R.T. Rajendra Kumar, Y. Haldorai, Metal-organic frameworks with different oxidation states of metal nodes and aminoterephthalic acid ligand for degradation of Rhodamine B under solar light, Chemosphere, 286 (2022) 131726, doi: 10.1016/j.chemosphere.2021.131726.
  51. F.Y. Chen, X. Zhang, Y.B. Tang, X.G. Wang, K.K. Shu, Facile and rapid synthesis of a novel spindle-like heterojunction BiVO4 showing enhanced visible-light-driven photoactivity, RSC Adv., 10 (2020) 5234–5240.
  52. L. Cheng, F.Y. Chen, Z.Q. Zhu, Y.B. Tang, K.K. Shu, W.L. Shi, Vacancy-modified g-C3N4 nanosheets via one-step thermal polymerization of thiosemicarbazide precursor for visible-light-driven photocatalytic activity, Mater. Chem. Phys., 275 (2022) 125192–125202.
  53. X. Zhang, F.Y. Chen, Y.B. Tang, Y.M. Liu, X.G. Wang, A rapid microwave synthesis of nanoscale
    BiVO4/Bi2O3@SiO2 with large specific surface area and excellent visible-light-driven activity, Desal. Water Treat., 152 (2019) 99–107.
  54. F.Y. Chen, M.K. He, Y.B. Tang, C.Y. He, K.K. Shu, M.Y. Li, A facile vapor deposition synthesis of g-C3N4/SiO2 nanocomposite with large specific surface area and enhanced photocatalytic activity, Desal. Water Treat., 196 (2020) 247–255.
  55. N. Liu, W. Huang, M. Tang, C. Yin, B. Gao, Z. Li, L. Tang, J. Lei, L. Cui, X. Zhang, In-situ fabrication of
    needle-shaped MIL-53(Fe) with 1T-MoS2 and study on its enhanced photocatalytic mechanism of ibuprofen, Chem. Eng. J., 359 (2019) 254–264.
  56. J. Low, L. Zhang, T. Tong, L. Wu, J. Lu, TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity, J. Catal., 361 (2018) 255–266.