References

  1. A. Raihan, R.A. Begum, M. Nizam, M. Said, J.J. Pereira, Dynamic impacts of energy use, agricultural land expansion, and deforestation on CO2 emissions in Malaysia, Environ. Ecol. Stat., 29 (2022) 477–507.
  2. N.A. Ismail, Space Sector Development in Malaysia, Q. Verspieren, M. Berthet, G. Coral, S. Nakasuka, H. Shiroyama, Eds., ASEAN Space Programs: History and Way Forward, Springer Nature Singapore, Singapore, 2022, pp. 43–55.
  3. Z. Stoyanova, H. Harizanova, Impact of agriculture on water pollution, AGROFOR Int. J., 4 (2019) 111–118.
  4. A. Ratnasari, A. Syafiuddin, R.P.N. Budiarti, D.N. Bistara, F.K. Fitriyah, R.R. Mardhotillah, Mass transfer mechanisms of water pollutions adsorption mediated by different natural adsorbents, Environ. Qual. Manage., (2022) 1–10, doi: 10.1002/tqem.21849.
  5. A. Alengebawy, S.T. Abdelkhalek, S.R. Qureshi, M.-Q. Wang, Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications, Toxics, 9 (2021) 42, doi:10.3390/toxics9030042.
  6. B.V. Tangahu, S.R. Sheikh Abdullah, H. Basri, M. Idris, N. Anuar, M. Mukhlisin, Lead(Pb) removal from contaminated water using constructed wetland planted with Scirpus grossus: optimization using response surface methodology (RSM) and assessment of rhizobacterial addition, Chemosphere, 291 (2022) 132952, doi: 10.1016/j.chemosphere.2021.132952.
  7. A. Ratnasari, N.S. Zaidi, A. Syafiuddin, R. Boopathy, A.B.H. Kueh, R. Amalia, D.D. Prasetyo, Prospective biodegradation of organic and nitrogenous pollutants from palm oil mill effluent by acidophilic bacteria and archaea, Bioresour. Technol. Rep., 15 (2021) 100809, doi: 10.1016/j.biteb.2021.100809.
  8. W.C. Ting, N.S. Zaidi, Z.Z. Loh, M.B. Bahrodin, N.A. Awang, A. Kadier, Assessment and optimization of a natural coagulant (Musa paradisiaca) peels for domestic wastewater treatment, Environ. Toxicol. Manage., 2 (2022) 7–13.
  9. R. Boopathy, J. Cortez, Biodegradation of an antimicrobial compound triclosan under sulfate reducing condition, Environ. Toxicol. Manage., 2 (2022) 1–6, doi: 10.33086/etm.v2i1.2831.
  10. S.N. Ishak, N.A. Nizam Nik Malek, Functionalized layered double hydroxide with compound to remove cationic and anionic pollutants: a review, Environ. Toxicol. Manage., 1 (2021) 26–29, doi: 10.33086/etm.v1i1.2062.
  11. M.N.H. Jusoh, C.N. Yap, T. Hadibarata, H. Jusoh, M.Z.M. Najib, Nanomaterial for inorganic pollutant remediation, Environ. Toxicol. Manage., 1 (2021) 18–25, doi: 10.33086/etm.v1i1.2037.
  12. C. Siriwardana, A.T. Cooray, S.S. Liyanage, S.M.P.A. Koliyabandara, Seasonal and spatial variation of dissolved oxygen and nutrients in Padaviya Reservoir, Sri Lanka, J. Chem., 2019 (2019) 5405016, doi:10.1155/2019/5405016.
  13. X. Tang, R. Li, D. Han, M. Scholz, Response of eutrophication development to variations in nutrients and hydrological regime: a case study in the Changjiang River (Yangtze) Basin, Water, 12 (2020) 1634, doi:10.3390/w12061634.
  14. H. Ribeiro, I.M.W. Wijaya, V. Soares-Santos, E.S. Soedjono, A. Slamet, C. Teixeira, A.A. Bordalo, Microbial community composition, dynamics, and biogeochemistry during the start-up of a partial nitritation-anammox pathway in an upflow reactor, Sustainable Environ. Res., 32 (2022) 18, doi: 10.1186/s42834-022-00130-1.
  15. A. Ratnasari, A. Syafiuddin, N.S. Zaidi, A.B. Hong Kueh, T. Hadibarata, D.D. Prastyo, R. Ravikumar,
    P. Sathishkumar, Bioremediation of micropollutants using living and non-living algae – current perspectives and challenges, Environ. Pollut., 292 (2022) 118474, doi: 10.1016/j.envpol.2021.118474.
  16. A. Syafiuddin, R. Boopathy, Effect of algal cells on water pollution control, Curr. Pollut. Rep., 7 (2021) 213–226.
  17. A. Syafiuddin, R. Boopathy, Role of anaerobic sludge digestion in handling antibiotic resistant bacteria and antibiotic resistance genes – a review, Bioresour. Technol., 330 (2021) 124970, doi:10.1016/j.biortech.2021.124970.
  18. A. Syafiuddin, R. Boopathy, M.A. Mehmood, Recent advances on bacterial quorum quenching as an effective strategy to control biofouling in membrane bioreactors, Bioresour. Technol. Rep., 15 (2021) 100745, doi:10.1016/j.biteb.2021.100745.
  19. A. Naima, F. Ammar, O. Abdelkader, C. Rachid, H. Lynda, A. Syafiuddin, R. Boopathy, Development of a novel and efficient biochar produced from pepper stem for effective ibuprofen removal, Bioresour. Technol., 347 (2022) 126685, doi: 10.1016/j.biortech.2022.126685.
  20. A. Ratnasari, A. Syafiuddin, R. Boopathy, S. Malik, M. Aamer Mehmood, R. Amalia, D. Dwi Prastyo,
    N. Syamimi Zaidi, Advances in pretreatment technology for handling the palm oil mill effluent: challenges and prospects, Bioresour. Technol., 344 (2022) 126239, doi: 10.1016/j.biortech.2021.126239.
  21. N. Syamimi Zaidi, A. Syafiuddin, M. Sillanpää, M. Burhanuddin Bahrodin, L. Zhang Zhan, A. Ratnasari, A. Kadier, M. Aamer Mehmood, R. Boopathy, Insights into the potential application of magnetic field in controlling sludge bulking and foaming: a review, Bioresour. Technol., 358 (2022) 127416, doi:10.1016/j.biortech.2022.127416.
  22. A.A. Mad Akahir, Z. Mat Lazim, S. Salmiati, Removal of silver nanoparticles using phytoremediation method, Environ. Toxicol. Manage., 1 (2021) 28–31, doi: 10.33086/etm.v1i2.2265.
  23. T. Hadibarata, B. Voijant Tangahu, Green engineering principles and application: bioremediation, Environ. Toxicol. Manage., 1 (2021) 1–8, doi: 10.33086/etm.v1i3.2504.
  24. Sweety, Bioremediation of Textile Dyes: Appraisal of Conventional and Biological Approaches, V. Kumar,
    M. Kumar, R. Prasad, Eds., Phytobiont and Ecosystem Restitution, Springer Singapore, Singapore, 2018,
    pp. 459–487.
  25. H. Sarma, Metal hyperaccumulation in plants: a review focusing on phytoremediation technology, J. Environ. Sci. Technol., 4 (2011) 118–138.
  26. A.A. Ansari, M. Naeem, S.S. Gill, F.M. AlZuaibr, Phytoremediation of contaminated waters: an eco-friendly technology based on aquatic macrophytes application, The Egypt. J. Aquat. Res., 46 (2020) 371–376.
  27. M. Talebi, B.E.S. Tabatabaei, H. Akbarzadeh, Hyperaccumulation of Cu, Zn, Ni, and Cd in Azolla species inducing expression of methallothionein and phytochelatin synthase genes, Chemosphere, 230 (2019) 488–497.
  28. A.A. Mostafa, A.K. Hegazy, N.H. Mohamed, R.M. Hafez, E. Azab, A.A. Gobouri, H.A. Saad, A.M. Abd-El Fattah,
    Y.M. Mustafa, Potentiality of Azolla pinnata R. Br. for phytoremediation of polluted freshwater with crude petroleum oil, Separations, 8 (2021) 39, doi: 10.3390/separations8040039.
  29. E. Azab, A.-F.S. Soror, Physiological behavior of the aquatic plant Azolla sp. in response to organic and inorganic fertilizers, Plants (Basel), 9 (2020) 924, doi: 10.3390/plants9070924.
  30. P.S. Parikh, S.K. Mazumder, Capacity of Azolla pinnata var. imbricata to absorb heavy metals and fluorides from the wastewater of oil and petroleum refining industry at Vadodara, Int. J. Allied Pract. Res. Rev., 2 (2015) 37–43.
  31. C.O. Akinbile, B.T. Ikuomola, O.O. Olanrewaju, T.E. Babalola, Assessing the efficacy of Azolla pinnata in four different wastewater treatment for agricultural re-use: a case history, Sustainable Water Resour. Manage., 5 (2019) 1009–1015.
  32. A.A. Kadir, S.R.S. Abdullah, B.A. Othman, H.A. Hasan, A.R. Othman, M.F. Imron, N.I. Ismail, S.B. Kurniawan, Dual function of Lemna minor and Azolla pinnata as phytoremediator for Palm Oil Mill Effluent and as feedstock, Chemosphere, 259 (2020) 127468, doi: 10.1016/j.chemosphere.2020.127468.
  33. H. Handajani, Optimation of nitrogen and phosphorus in Azolla growth as biofertilizer, Makara J. Technol., 15 (2011) 142–146.
  34. P.W. Barlow, Stem Cells and Founder Zones in Plants, Particularly Their Roots, C.S. Potten, Ed., Stem Cells, Academic Press, London, 1997, pp. 29–57.
  35. P. Veazie, P. Cockson, J. Henry, P. Perkins-Veazie, B. Whipker, Characterization of nutrient disorders and impacts on chlorophyll and anthocyanin concentration of Brassica rapa var. Chinensis, Agriculture, 10 (2020) 461, doi: 10.3390/ agriculture10100461.
  36. R. Othman, Q.A.M. Ali, W.N.A.W. Muhamad, M. Yaman, Z.M. Baharuddin, Eutrophication state monitoring for unhealthy aquatic ecosystem via free-floating macrophytes pattern and behavioral, Int. J. Sustainable Energy Environ. Res., 3 (2014) 171–177.
  37. E.J. González, G. Roldán, Eutrophication and Phytoplankton: Some Generalities From Lakes and Reservoirs of the Americas, M. Vítová, Eds., Microalgae—From Physiology to Application, InTechOpen, 2019.
  38. N. Greenwood, M.J. Devlin, M. Best, L. Fronkova, C.A. Graves, A. Milligan, J. Barry, S.M. van Leeuwen, Utilizing eutrophication assessment directives from transitional to marine systems in the Thames Estuary and Liverpool Bay, UK, Front. Mar. Sci., 6 (2019) 116, doi: 10.3389/fmars.2019.00116.
  39. A. Ugya, T. Imam, A. Hassan, Phytoremediation of textile waste water using Azolla pinnata: a case study, World J. Pharm. Res., 6 (2017) 1142–1150.
  40. P. Kumar Prusty, K. Bihari Satapathy, Phytoremediation of waste water by using Azolla-anabaena consortium and its aquatic associates: a review, Plant Arch., 20 (2020) 1933–1943.
  41. R. Utomo, C.T. Noviandi, N. Umami, A. Permadi, Effect of composted animal manure as fertilizer on productivity of Azolla pinnata grown in earthen ponds, OnLine J. Biol. Sci., 19 (2019) 232–236.
  42. G. Koleszár, Z. Nagy, E.T.H.M. Peeters, G. Borics, G. Várbíró, S. Birk, S. Szabó, The role of epiphytic algae and grazing snails in stable states of submerged and of free-floating plants, Ecosystems, (2021), doi:10.1007/s10021-021-00721-w.
  43. S. Lamichhane, J.-E. Seo, T. Keum, G. Noh, S. Bashyal, S.-W. Cho, E.-H. Lee, S. Lee, Enhancing solubility and bioavailability of coenzyme Q10: formulation of solid dispersions using Soluplus® as a carrier, Arch. Pharm. Res., 45 (2022) 29–37.
  44. G. Skouteris, D. Patrick Webb, K.L.F. Shin, S. Rahimifard, Assessment of the capability of an optical sensor for in-line realtime wastewater quality analysis in food manufacturing, Water Resour. Ind., 20 (2018) 75–81.
  45. N.U. Mohd Nizam, M. Mohd Hanafiah, I. Mohd Noor, H.I. Abd Karim, Efficiency of five selected aquatic plants in phytoremediation of aquaculture wastewater, Appl. Sci., 10 (2020) 2712, doi: 10.3390/app10082712.
  46. Å.N. Austin, J.P. Hansen, S. Donadi, J.S. Eklöf, Relationships between aquatic vegetation and water turbidity: a field survey across seasons and spatial scales, PLoS One, 12 (2017) e0181419, doi:10.1371/journal.pone.0181419.
  47. A.A. Ansari, G.S. Singh, G.R. Lanza, W. Rast, Eutrophication: Causes, Consequences and Control, Vol. 1, Springer, New York, 2010.
  48. J.L. Davis, G. Shaw, Impacts of Eutrophication on the Safety of Drinking and Recreational Water, Water and Health-Volume II, UNESCO, Paris, 2009, p. 147.
  49. P. Carlozzi, G. Padovani, The aquatic fern Azolla as a natural plant-factory for ammonia removal from fish-breeding fresh wastewater, Environ. Sci. Pollut. Res., 23 (2016) 8749–8755.
  50. N.B.M. Zanuri, M.B. Abdullah, N.A.M. Darif, N. Nilamani, A.T.S. Hwai, Case study of marine pollution in Teluk Bahang, Penang, Malaysia, IOP Conf. Ser.: Earth Environ. Sci., 414 (2020) 012032.
  51. F.M. Muvea, G.M. Ogendi, S.O. Omondi, Nutrient removal efficiency by floating macrophytes; Lemna minor and Azolla pinnata in a constructed wetland, Global J. Environ. Sci. Manage., 5 (2019) 415–430.
  52. V. Yadav, T. Karak, S. Singh, A.K. Singh, P. Khare, Benefits of biochar over other organic amendments: responses for plant productivity (Pelargonium graveolens L.) and nitrogen and phosphorus losses, Ind. Crops Prod., 131 (2019) 96–105.
  53. W. Khongpet, P. Yanu, S. Pencharee, C. Puangpila, S. Kradtap Hartwell, S. Lapanantnoppakhun, Y. Yodthongdee, A. Paukpol, J. Jakmunee, A compact multi-parameter detection system based on hydrodynamic sequential injection for sensitive determination of phosphate, nitrite, and nitrate in water samples, Anal. Methods, 12 (2020) 855–864.
  54. H. Wang, F. Wang, C. Wang, Y. Han, Effects of floating Azolla on phosphorus fluxes and recovery from former agricultural lands in wetland microcosms, Soil Sci. Plant Nutr., 65 (2019) 90–99.
  55. A.M. Rezooqi, R.S. Mouhamad, K.A. Jasim, The potential of Azolla filiculoides for in vitro phytoremediation of wastewater, J. Phys. Conf. Ser., 1853 (2021) 012014.
  56. M.A. Kamaruddin, M.S. Yusoff, H.A. Aziz, C.O. Akinbile, Recent developments of textile waste water treatment by adsorption process: a review, Int. J. Sci. Res. Knowl., 1 (2013) 60–73.
  57. G. Eisenbrand, B. Spiegelhalder, R. Preussmann, Nitrate and nitrite in saliva, Oncology, 37 (1980) 227–231.
  58. S. Shyamala, N.A. Manikandan, K. Pakshirajan, V.T. Tang, E.R. Rene, H.-S. Park, S.K. Behera, Phytoremediation of nitrate contaminated water using ornamental plants, J. Water Supply Res. Technol. AQUA, 68 (2019) 731–743.
  59. J. Mateo-Sagasta, S.M. Zadeh, H. Turral, J. Burke, Water Pollution From Agriculture: A Global Review, Executive Summary, Food and Agriculture Organization of the United Nations and International Water Management Institute (IWMI), Rome, 2017.
  60. C. Forni, M.A. Nicolai, M.G. D’Egidio, Potential of the Small Aquatic Plans Azolla and Lemna for Nitrogenous Compounds Removal From Wastewater, Vol. 49, WIT Transactions on Ecology and the Environment, WIT Press, Southampton, 2001.
  61. A. Golzary, O. Tavakoli, Y. Rezaei, A.R. Karbassi, Wastewater treatment by Azolla filiculoides: study on color, odor, COD, nitrate, and phosphate removal, Pollution, 4 (2018) 69–76.