References

  1. A.A. Inyinbor, B.O. Adebesin, A.P. Oluyori, T.A. Adelani-Akande, A.O. Dada, T.A. Oreofe, Water Pollution: Effects, Prevention, and Climatic Impact, M. Glavan, Eds., Water Challenges of an Urbanizing World, IntechOpen, March 21st 2018.
  2. K.P. Praveen, S. Ganguly, K. Kumar, K. Kumari, Water pollution and its hazardous effects to human health:
    a review on safety measures for adoption, Int. J. Sci. Environ. Technol., 5 (2016) 1559–1563.
  3. A.E. Ghaly, R. Ananthashankar, M. Alhattab, V.V. Ramakrishnan, Production, characterization and treatment of textile effluents: a critical review, J. Chem. Eng. Process Technol., 5 (2014) 1–18.
  4. D.A. Yaseen, M. Scholz, Shallow pond systems planted with Lemna minor treating azo dyes, Ecol. Eng., 94 (2016) 295–305.
  5. A. Gasmi, M. Heran, A. Hannnachi, A. Grasmick, New technology for wastewater treatment to decrease fouling propensity, Desal. Water Treat., 52 (2014) 2193–2200.
  6. A.K.R. Choudhury, Eco-friendly dyes and dyeing, Adv. Mater. Technol. Environ., 2 (2018) 145–176.
  7. J. Polak, A. Jarosz-Wilkolazka, S.-C. Agnieszka, K. Wlizlo, K. Magdalena, S.-L. Jadwiga, J. Lichawska-Olczyk, Toxicity and dyeing properties of dyes obtained through laccase-mediated synthesis, J. Cleaner Prod., 112 (2016) 4265–4272.
  8. I. Vergili, Y. Kaya, U. Sen, Z.B. Gönder, C. Aydiner, Technoeconomic analysis of textile dye bath wastewater treatment by integrated membrane processes under the zero liquid discharge approach, Resour. Conserv. Recycl., 58 (2012) 25–35.
  9. H. Yin, P. Qiu, Y. Qian, Z. Kong, Z. Xiaolong, T. Zhihua, G. Huafang, Textile wastewater treatment for water reuse: a case study, Processes, 7 (2019) 34, doi: 10.3390/pr7010034.
  10. M.I. Aydin, B. Yuzer, A. Ongen, H.E. Okten, H. Selcuk, Comparison of ozonation and coagulation decolorization methods in real textile wastewater, Desal. Water Treat., 103 (2018) 1–10.
  11. C. Fargues, C. Sagne, A. Szymczyk, P. Fievet, M.L. Lameloise, Adsorption of small organic solutes from beet distillery condensates on reverse-osmosis membranes: consequences on the process performances, J. Membr. Sci., 446 (2013) 132–144.
  12. A. Yasar, A.B. Tabinda, Anaerobic treatment of industrial wastewater by UASB reactor integrated with chemical oxidation processes: an overview, Pol. J. Environ. Stud., 19 (2010) 1051–1061.
  13. V. Kumar, M.P. Shah, Chapter 1 – Advanced Oxidation Processes for Complex Wastewater Treatment,
    M.P. Shah, Ed., Advanced Oxidation Processes for Effluent Treatment Plants, Elsevier, ISBN 9780128210116, 2021, pp. 1–31.
  14. G. Wen, C. Qiang, Y. Feng, T. Huang, Bromate formation during the oxidation of bromide-containing water by ozone/peroxymonosulfate process: influencing factors and mechanisms, Chem. Eng. Sci., 352 (2018) 316–324.
  15. N. Kishimoto, State of the art of UV/chlorine advanced oxidation processes: their mechanism, by-products formation, process variation, and applications, J. Water Environ. Technol., 17 (2019) 302–335.
  16. E. Yuksel, M. Eyvaz, E. Gurbulak, Electrochemical treatment of colour index reactive orange 84 and textile wastewater by using stainless steel and iron electrodes, Environ. Prog. Sustainable Energy, 32 (2011) 60–68.
  17. G. Varanka, M.E. Sabuncu, Application of central composite design approach for dairy wastewater treatment by electrocoagulation using iron and aluminum electrodes: modeling and optimization, Desal. Water Treat., 56 (2015) 1–22.
  18. Y. Demirci, L.C. Pekel, M. Alpbaz, Investigation of different electrode connections in electrocoagulation of textile wastewater treatment, Int. J. Electrochem. Sci., 10 (2015) 2685–2693.
  19. H. Singh, B.K. Mishra, Performance evaluation of the electrocoagulation treatment process for the removal of total suspended solids and metals from water, World Congress on Sustainable Technologies (WCST), 2015.
  20. M. Kobya, P.I. Omwene, Z. Ukundimana, Treatment and operating cost analysis of metalworking wastewaters by a continuous electrocoagulation reactor, J. Environ. Chem. Eng., 8 (2020) 103526, doi:10.1016/j.jece.2019.103526.
  21. D.S.M. Islam, Electrocoagulation (EC) technology for wastewater treatment and pollutants removal, Sustainable Water Resour. Manage., 5 (2017) 359–380.
  22. F.I. El-Hosiny, K.A. Selmi, M.A. Abdel-Khalek, O. Inge, Physicochemical study of dye removal using electrocoagulationflotation process, Physicochem. Probl. Miner. Process., 54 (2018) 321–333.
  23. J. Vidal, L. Villegas, M. Juan, P. Hernández, R.S. González, Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 51 (2016) 289–296.
  24. T.S.A. Singh, S.T. Ramesh, An experimental study of CI Reactive Blue 25 removal from aqueous solution by electrocoagulation using aluminum sacrificial electrode: kinetics and influence of parameters on electrocoagulation performance, Desal. Water Treat., 52 (2014) 13–15.
  25. M. Ahmadian, N. Yousefi, S.W.V. Ginkel, M.R. Zare, R. Sajad, F. Ali, Kinetic study of slaughterhouse wastewater treatment by electrocoagulation using Fe electrodes, Water Sci. Technol., 66 (2012) 754–60.
  26. M.K. Roković, M. Čubrić, O. Wittine, Phenolic compounds removal from mimosa tannin model water and olive mill wastewater by energy-efficient electrocoagulation process, J. Electrochem. Sci. Eng., 4 (2014) 215–225.
  27. A. Pirkarami, M.E. Oly, Removal of dye from industrial wastewater with an emphasis on improving economic efficiency and degradation mechanism, J. Saudi Chem. Soc., 21 (2014) 179–186.
  28. G.F.S. Valente, R.C.S. Mendonça, J.A.M. Pereira, The efficiency of electrocoagulation using aluminum electrodes in treating wastewater from a dairy industry, Ciência. Rural., 45 (2015) 1713–1719.
  29. A. Ogedey, M. Tanyol, Optimizing electrocoagulation process using experimental design for COD removal from unsanitary landfill leachate, Water Sci. Technol., 76 (2017) 2907–2917.
  30. M.P.M. Combatt, R.C.S. Mendoca, G.F.S. Valente, Validation of the electrocoagulation process and evaluation of the electro-dissolution of electrodes in the treatment of poultry slaughterhouse wastewater, Quim. Nova, 40 (2017) 447–453.
  31. P. Asaithambi, D. Beyene, A.R. Abdul Aziz, E. Alemayehu, Removal of pollutants with determination of power consumption from landfill leachate wastewater using an electrocoagulation process: optimization using response surface methodology (RSM), Appl. Water Sci., 8 (2018) 1–12.
  32. S. Irki, D. Ghernaout, M.W. Naceur, A. Alghamdi, M. Aichouni, Decolorizing Methyl orange by
    Fe-electrocoagulation process – a mechanistic insight, J. Environ. Anal. Chem., 2 (2018) 18–28.
  33. S. Manikandan, R. Saraswathi, M.S. Ansari, Effect of pH and electrolysis time on removal of Reactive Black B dye by electrochemical treatment, Asian J. Eng. Technol. Innovation, 7 (2018) 45–47.
  34. R. Shah, H. Tahir, S. Sadiq, Modeling and optimization of electrocoagulation process for the removal of Yellow145 dye based on central composite design, J. Anal. Environ. Chem., 20 (2019) 115–126.
  35. J. Núñez, M. Yeberb, N. Cisternasc, R. Thibaut, P. Medina, C. Carrasco, Application of electrocoagulation for the efficient pollutants removal to reuse the treated wastewater in the dyeing process of the textile industry, J. Hazard. Mater., 371 (2019) 705–711.
  36. Z. Gündüz, M. Atabey, Effects of operational parameters on the decolourisation of Reactive Red 195 dye from aqueous solutions by electrochemical treatment, Int. J. Electrochem. Sci., 14 (2019) 5868–5885.
  37. K.D. Cruz, J.T.J. Francisco, K.J.M. Mellendrez, J.M.F. Pineda, Electrocoagulation treatment of swine slaughterhouse wastewater: effect of electrode material, E3S Web Conf., 117 (2019) 00020.
  38. A. Deghles, Treatment of tannery wastewater by the application of electrocoagulation process using iron and aluminum electrodes, Green Sustainable Chem., 9 (2019) 119–134.
  39. S. Abbasi, M. Mirghorayshi, S. Zinadini, A.A. Zinatizadeh, A novel single continuous electrocoagulation process for treatment of licorice processing wastewater: optimization of operating factors using RSM, Process Saf. Environ. Prot., 134 (2019) 323–332.
  40. K. Gautam, S. Kamsonlian, S. Kumar, Removal of Reactive Red 120 dye from wastewater using electrocoagulation: optimization using multivariate approach, economic analysis, and sludge characterization, Sep. Sci. Technol., 55 (2019) 3412–3426.
  41. R. Niazmand, M. Jahani, F. Sabbagh, R. Shahabaldin, Optimization of electrocoagulation conditions for the purification of table olive debittering wastewater using response surface methodology, Water, 12 (2020) 1687, doi: 10.3390/w12061687.
  42. K. Hendaoui, M.T. Ayadi, F. Ayari, Optimization and mechanisms analysis of Indigo dye removal using continuous electrocoagulation, Chin. J. Chem. Eng., 29 (2020) 242–252.
  43. J. Jing, R. Shuai, Y. Gao, W. Sun, Z. Gao, Electrocoagulation: a promising method to treat and reuse mineral processing wastewater with high COD, Water, 12 (2020) 1–12.
  44. C.H. Huang, S.Y. Shen, C.D. Dong, M. Kumarand, J. Chang, Removal mechanism and effective current of electrocoagulation for treating wastewater containing Ni(II), Cu(II), and Cr(VI), Water, 12 (2020) 1–11.
  45. A.A. Moneer, N.M. El-Mallah, M.M. El-Sadaawy, M. Khedawy, M.S.H. Ramadan, Kinetics, thermodynamics, isotherm modeling for removal of Reactive Red 35 and Disperse Yellow 56 dyes using batch bi-polar aluminum electrocoagulation, Alexandria Eng. J., 60 (2021) 4139–4154.
  46. D. Ghernaout, B. Ghernaout, A. Boucherit, M.W. Naceur, A. Kellil, Study on mechanism of electrocoagulation with iron electrodes in idealised conditions and electrocoagulation of humic acids solution in batch using aluminium electrodes, Desal. Water Treat., 8 (2009) 91–99.
  47. T.S.A. Singh, S.T. Ramesh, New trends in electrocoagulation for the removal of dyes from wastewater: a review, Environ. Eng. Sci., 30 (2013) 333–349.
  48. M.Y.A. Mollah, P. Morkovsky, J.A.G. Gomes, M. Kesmez, J. Parga, D.L. Cocke, Fundamentals, present and future perspectives of electrocoagulation, J. Hazard. Mater., 114 (2004) 199–210.
  49. B.D. Syam, T.S.A. Singh, P.V. Nidheesh, M.S. Kumar, Industrial wastewater treatment by electrocoagulation process, Sep. Sci. Technol., 55 (2019) 3195–3227.
  50. S.G. Seguraa, M.S.G. Eibanda, J.V. Meloa, H.C.A. Martínez, Electrocoagulation and advanced electrocoagulation processes: a general review about the fundamentals, emerging applications and its association with other technologies, J. Electroanal. Chem., 801 (2017) 267–299.
  51. J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, J. Naja, Electrocoagulation process in water treatment: a review of electrocoagulation modeling approaches, Desalination, 404 (2017) 1–21.
  52. D. Lakshmanan, D.A. Clifford, G. Samanta, Ferrous and ferric ion generation during iron electrocoagulation, Environ. Sci. Technol., 43 (2009) 3853–3859.
  53. S.T. Tchamango, O.K. Kamdoum, D.D. Donfack, D. Babale, E.N. Ngameni, Comparison of electrocoagulation and chemical coagulation in the treatment of artisanal tannery, Niger. J. Technol., 35 (2016) 219–225.
  54. S.I. Chaturvedi, Electrocoagulation: a novel wastewater treatment method, Int. J. Mod. Eng. Res. Technol., 3 (2013) 93–100.
  55. G. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38 (2004) 11–41.
  56. M. Chen, O. Dollar, K.S. Peltier, S. Randtke, S. Waseem, E. Peltier, Boron removal by electrocoagulation: removal mechanism, adsorption models and factors influencing removal, Water Res., 170 (2020) 115362, doi:10.1016/j.watres.2019.115362.
  57. M. Elazzouzi, K. Haboubi, M.S. Elyoubi, Electrocoagulation flocculation as a low-cost process for pollutants removal from urban wastewater, Chem. Eng. Res. Des., 117 (2017) 614–626.
  58. T. Picard, F.G. Cathalifaund, M. Mazet, C. Vandensteendam, Cathodic dissolution in the electrocoagulation process using aluminum electrodes, J. Environ. Monit., 2 (2020) 77–80.
  59. J.B. Parsa, H.R. Vahidian, A.R. Soleymani, M. Abbasi, Removal of Acid Brown 14 in aqueous media by electrocoagulation: optimization parameters and minimizing of energy consumption, Desalination, 278 (2011) 295–302.
  60. N. Daneshvar, S.H. Ashassi, M.B. Kasiri, Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connection, J. Hazard. Mater., 112 (2004) 55–62.
  61. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  62. H. Freundlich, Kolloidfällung und adsorption, Angew. Chem. Int. Ed., 20 (1907) 749–750.
  63. M.M. Dubinin, L.V. Radushkevich, The equation of the characteristic curve of activated charcoal, Phys. Chem. Sect., 55 (1947) 331–337.
  64. O. Redlich, D.L. Peterson, A useful adsorption isotherm, J. Phys. Chem., 63 (1959) 1024–1029.
  65. R. Sips, On the structure of a catalyst surface, J. Chem. Phys., 16 (1948) 490–495.
  66. H.K. Said, N.M. Mostefa, Optimization of turbidity and COD removal from pharmaceutical wastewater by electrocoagulation. Isotherm modeling and cost analysis, Pol. J. Environ. Stud., 24 (2015) 1049–1061.
  67. D.J. Castañeda, S.T. Pavón, S.E. Gutiérrez, C.A. Colín, Electrocoagulation- adsorption to remove anionic and cationic dyes from aqueous solution by PV-energy, J. Chem., 2017 (2017) 1–14.
  68. T. Öztürk, H. Akbaş, K.G. Aydın, Dye removal from synthetic and dye bath wastewater by electrocoagulation method and isotherms, MANAS J. Eng., 8 (2020) 115–124.
  69. A.I. Adeogun, R.B. Balakrishnan, Kinetics, isothermal and thermodynamics studies of electrocoagulation removal of basic dye rhodamine B from aqueous solution using steel electrodes, Appl. Water Sci., 7 (2017) 1711–1723.
  70. Z. Zaroual, M. Azzi, N. Saib, E. Chainet, Contribution to study of electrocoagulation mechanism in basic textile effluent, J. Hazard. Mater., B, 131 (2006) 73–78.
  71. A.K. Golder, H. Kumar, A.N. Samanta, S. Ray, Colour diminution and COD reduction in treatment of coloured effluent by electrocoagulation, Int. J. Energy Environ. Eng., 2 (2009) 228–238.
  72. M.H.A. Casillas, D.L. Cocke, G.J.A. Gomes, P. Morkovsky, J.P. Parga, E. Peterson, Electrocoagulation mechanism for COD removal, Sep. Purif. Technol., 56 (2007) 204–211.
  73. B. Louhichi, F. Gaied, K. Mansouri, M.R. Jeday, Treatment of textile industry effluents by electro-coagulation and electro- Fenton processes using solar energy: a comparative study, Chem. Eng. J., 427 (2022) 131735, doi: 10.1016/j.cej.2021.131735.
  74. T.B. Pavón-Silva, H. Romero-Tehuitzil, G.M. del Río, J. Huacuz- Villamar, Photovoltaic energy-assisted electrocoagulation of a synthetic textile effluent, Int. J. Photoenergy, 2018 (2018) 7978901, doi:10.1155/2018/7978901.
  75. X. Mao, H. Song, Z. Hua, L. Hui, W. Lin, G. Fuxing, Alternating pulse current in electrocoagulation for wastewater treatment to prevent the passivation of al electrode, J. Wuhan Univ. Technol.-Mater. Sci. Ed., 23 (2008) 239–241.
  76. M. Eyvaz, E. Gürbulak, S. Kara, E. Yüksel, Preventing of Cathode Passivation/Deposition in Electrochemical Treatment Methods – A Case Study on Winery Wastewater with Electrocoagulation, M. Aliofkhazraei, Ed., Modern Electrochemical Methods in Nano, Surface and Corrosion Science, IntechOpen, 2014.
  77. K.W. Pi, Q. Xiao, H.Q. Zhang, M. Xia, A.R. Gerson, Decolorization of synthetic Methyl orange wastewater by electrocoagulation with periodic reversal of electrodes and optimization by RSM, Process Saf. Environ. Prot., 92 (2014) 796–806.
  78. N. Ardhan, T. Ruttithiwapanic, W. Songkasiri, C. Phalakornkule, Comparison of performance of continuous-flow and batch electrocoagulators: a case study for eliminating Reactive blue 21 using iron electrodes, Sep. Purif. Technol., 146 (2015) 75–84.
  79. E.-S.Z. El-Ashtoukhy, N.K. Amin, O. Abdelwahab, Treatment of paper mill effluents in a batch-stirred electrochemical tank reactor, Chem. Eng. J., 146 (2009) 205–210.
  80. A.T. Ortega, S.A.M. Delgadillo, V.X.M. Escamilla, M.M. Lozano, C.B. Díaz, Modeling the removal of Indigo dye from aqueous media in a sonoelectrochemical flow reactor, Int. J. Electrochem. Sci., 8 (2013) 3876–3887.
  81. A. López, D. Valero, L.G. Cruz, A. Sàez, V.G. García, E. Expósito, V. Montiel, Characterization of a new cartridge type electrocoagulation reactor (CTECR) using a three-dimensional steel wool anode, J. Electroanal. Chem., 793 (2017) 93–98.
  82. S.H. Ammar, N.N. Ismail, A.D. Ali, W.M. Abbas, Electrocoagulation technique for refinery wastewater treatment in an internal loop split-plate airlift reactor, J. Environ. Chem. Eng., 7 (2019) 103489, doi:10.1016/j.jece.2019.103489.
  83. M. Elhafdi, M. Benchikhic, A. Dassab, H. Chenik, A. Essadki, M. Azzi, Electrocoagulation/electroflotation of real textile effluent: improvement of the process in non-conventional pilot external loop airlift reactor, Mor. J. Chem., 6 (2018) 718–731.
  84. A.R. Rodrigues, C.C. Seki, L.S. Ramalho, A. Argondizo, A.P. Silva, Electrocoagulation in a fixed bed reactor – color removal in batch and continuous mode, Sep. Purif. Technol., 253 (2020) 117481, doi:10.1016/j.seppur.2020.117481.
  85. B.Y. Tak, B.K. Tak, Y.J. Kim, Y.J. Park, Y.H. Yoon, G.H. Min, Optimization of color and COD removal from livestock wastewater by electrocoagulation process: application of Box–Behnken design (BBD), J. Ind. Eng. Chem., 28 (2015) 307–315.
  86. S.S. Alkurdi, A.H. Abbar, Removal of COD from petroleum refinery wastewater by electro-coagulation process using SS/Al electrodes, Mater. Sci. Eng., 870 (2020) 012052.
  87. N. Daneshvar, A. Oladegaragoze, D. Djafarzadeh, Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters, J. Hazard. Mater., 129 (2006) 116–122.
  88. M.M. Hossain, M.I. Mahmud, M.S. Parvez, H.M. Cho, Impact of current density, operating time and pH of textile wastewater treatment by electrocoagulation process, Environ. Eng. Res., 18 (2013) 157–161.
  89. M. Kobya, O.T. Can, M. Bayramoglu, Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes, J. Hazard. Mater., 100 (2003) 163–178.
  90. D. Ghernaout, A.I. Al-Ghonamy, M.W. Naceur, N.A. Messaoudene, M. Aichouni, Influence of operating parameters on electrocoagulation of C.I. Disperse Yellow 3, J. Electrochem. Sci. Eng., 4 (2014) 271–283.
  91. R. Sridhar, V. Sivakumar, J.P. Maran, K. Thirugnanasambandham, Influence of operating parameters on treatment of egg processing effluent by electrocoagulation process, Int. J. Environ. Sci. Technol., 11 (2014) 1619–1630.
  92. N.B. Patel, B.D. Soni, J.P. Ruparelia, Studies on removal of dyes from wastewater using electro-coagulation process, NIRMA Univ. J. Eng. Technol., 1 (2010) 20–25.
  93. I.L. Hernández, C.B. Díaz, G.R. Morales, B. Bilyeu, F.U. Núnez, Influence of the anodic material on electrocoagulation performance, Chem. Eng. Sci., 148 (2009) 97–105.
  94. I. Syaichurrozi, S. Sarto, W.B. Sediawan, M. Hidayat, Effect of current and initial pH on electrocoagulation in treating the distillery spent wash with very high pollutant content, Water, 13 (2021) 1–20.
  95. F. Ozyonar, B. Karagozoglu, Operating cost analysis and treatment of domestic wastewater by electrocoagulation using aluminum electrodes, Pol. J. Environ. Stud., 20 (2011) 173–179.
  96. D. Ghernaout, The Holy Koran revelation: iron is a “sent down” metal, Am. J. Environ. Prot., 6 (2017) 101–104.
  97. X. Chen, G. Chen, P.L. Yue, Separation of pollutants from restaurant wastewater by electrocoagulation, Sep. Purif. Technol., 19 (2000) 65–76.
  98. S.F. Weiss, M.L. Christensen, M.K. Jørgensen, Mechanisms behind pH changes during electrocoagulation, AlChE J., 67 (2021) 1–13.
  99. A. Deghles, U. Kurt, Hydrogen gas production from tannery wastewater by electrocoagulation of a continuous mode with simultaneous pollutants removal, J. Appl. Chem., 10 (2017) 40–50.
  100. L. Sharma, S. Prabhakar, V. Tiwari, A. Dhar, A. Halder, Optimization of EC parameters using Fe and Al electrodes for hydrogen production and wastewater treatment, Adv. Environ., 3 (2021) 100029, doi:10.1016/j.envadv.2020.100029.
  101. O. Sahu, B. Mazumdar, P.K. Chaudhari, Treatment of wastewater by electrocoagulation: a review, Environ. Sci. Pollut. Res., 21 (2014) 2397–2413.
  102. F.Y. AlJaberi, Modelling current efficiency and ohmic potential drop in an innovated electrocoagulation reactor, Desal. Water Treat., 164 (2019) 102–110.
  103. F. Benaissa, S.H. Kermet, N.M. Mostefa, Optimization and kinetic modeling of electrocoagulation treatment of dairy wastewater, Desal. Water Treat., 57 (2014) 5988–5994.
  104. M. Nasrullah, N.I.M.D. Siddique, A.W. Zularisam, Effect of high current density in electrocoagulation process for sewage treatment, Chem. Asian J., 26 (2014) 4281–4285.
  105. M. Alizadeh, E. Ghahramani, M. Zarrabi, S. Hashemi, Efficient de-colorization of Methylene blue by electro-coagulation method: comparison of iron and aluminum electrode, Iran. J. Chem. Eng., 34 (2015) 39–47.
  106. S. Sen, A.K. Prajapati, A. Bannatwala, D. Pala, Electrocoagulation treatment of industrial wastewater including textile dyeing effluent – a review, Desal. Water Treat., 161 (2019) 21–34.
  107. R. Alam, J.Q. Shang, A.H. Khan, Bubble size distribution in a laboratory-scale electroflotation study, Environ. Monit. Assess., 189 (2017) 1–14.
  108. F. Ozyonar, H. Muratçobanoğlu, Ö. Gökkuş, Optimum process condition determination for the treatment of Disperse Blue 60 dye by electrocoagulation with Taguchi method, Desal. Water Treat., 201 (2020) 443–451.
  109. S.O. Giwa, K. Polat, H. Hapoglu, The effects of operating parameters on temperature and electrode dissolution in electrocoagulation treatment of petrochemical wastewater, Int. J. Eng. Res., 2 (2012) 639–647.
  110. M. Secula, C. Igor, P. Stelian, An experimental study of Indigo Carmine removal from aqueous solution by electrocoagulation, Desalination, 277 (2011) 227–235.
  111. Q.H. Nguyen, T. Watari, T. Yamaguchi, Y. Takimoto, K. Niihara, J.P. Wiff, T. Nakayama, COD removal from artificial wastewater by electrocoagulation using aluminum electrodes, Int. J. Electrochem. Sci., 15 (2020) 39–51.
  112. Z.B. Gonder, G. Balcglu, I. Vergili, Y. Kaya, Electrochemical treatment of carwash wastewater using Fe and Al electrode: techno-economic analysis and sludge characterization, J. Environ. Manage., 200 (2017) 380–390.
  113. S. Gondudey, P.K. Chaudhari, Influence of various electrode materials in electrocoagulation efficiency: application in treatment of sugar industry effluent, Sugar Tech., 22 (2019) 15–27.
  114. M.S. Mahmoud, J.Y. Farah, T.E. Farrag, Enhanced removal of Methylene blue by electrocoagulation using iron electrodes, Egypt. J. Pet., 22 (2013) 211–216.
  115. N. Modirshahla, M.A. Behnajady, S. Kooshaiian, Investigation of the effect of different electrode connections on the removal efficiency of Tartrazine from aqueous solutions by electrocoagulation, Dyes Pigm.,74 (2007) 249–257.
  116. R. Katal, H. Pahlavanzadeh, Influence of different combinations of aluminum and iron electrode on electrocoagulation efficiency: application to the treatment of paper mill wastewater, Desalination, 265 (2011) 199–205.
  117. D.T. Cestarolli, A.G. Oliveira, E.M. Guerra, Removal of Eriochrome black textile dye from aqueous solution by combined electrocoagulation–electroflotation methodology, Appl. Water Sci., 9 (2019) 1–5.
  118. S. Ainchu, J. Yimrattanabovorn, O. Panomasak, T. Toduang, K. Sakuadwan, W. Boonchai, Comparison of electrocoagulation using iron and aluminium electrodes with chemical coagulation for removal of vat dye solution, Sci. Technol., 28 (2020) 2563, doi: 10.14456/nujst.2020.11.
  119. S. Safari, A.M. Aghdam, H.R. Kariminia, Electrocoagulation for COD and diesel removal from oily wastewater, Int. J. Environ. Sci. Technol., 13 (2015) 231–242.
  120. R. Niazmand, M. Jahani, S. Kalantarian, Treatment of olive processing wastewater by electrocoagulation: an effectiveness and economic assessment, J. Environ. Manage., 248 (2019) 109262, doi:10.1016/j.jenvman.2019.109262.
  121. F. Ozyonar, S. Aksoy, Removal of salicylic acid from aqueous solutions using various electrodes and different connection modes by electrocoagulation, Int. J. Electrochem. Sci., 11 (2016) 3680–3696.
  122. M.H. El-Naas, S. Al-Zuhair, A. Al-Lobaney, S. Makhlouf, Assessment of electrocoagulation for the treatment of petroleum refinery wastewater, J. Environ. Manage., 91 (2009) 180–185.
  123. F. Ilhan, U. Kurt, O. Apaydin, MT. Gonullu, Treatment of leachate by electrocoagulation using aluminum and iron electrodes, J. Hazard. Mater., 154 (2008) 381–389.
  124. I. Zongo, A.H. Maiga, J. Wéthé, G. Valentin, J.P. Leclerc, G. Paternotte, F. Lapicque, Electrocoagulation for the treatment of textile wastewaters with Al or Fe electrodes: compared variations of COD levels, turbidity and absorbance, J. Hazard. Mater., 169 (2009) 70–76.
  125. D. Ghernaout, B. Ghernaout, On the controversial effect of sodium sulphate as supporting electrolyte on electrocoagulation process: a review, Desal. Water Treat., 27 (2011) 243–254.
  126. J.C. Izquierdo, P. Canizares, M.A. Rodrigo, J.P. Leclerc, G. Valentin, F. Lapicque, Effect of the nature of the supporting electrolyte on the treatment of soluble oils by electrocoagulation, Desalination, 255 (2010) 15–20.
  127. C.H. Huang, S.Y. Shen, C.W. Chen, C.D. Dong, K. Mohanraj, D. Balasubramanian, J.H. Chang, Effect of chloride ions on electro-coagulation to treat industrial wastewater containing Cu and Ni, Sustainability, 12 (2020) 7693, doi: 10.3390/su12187693.
  128. A. Pathak, V. Khandegar, A. Kumar, Removal of Acid Violet 17 by electrocoagulation using plain and extended surface electrodes, J. Hazard. Toxic Radioact. Waste, 25 (2021) 06021002.
  129. D. Ghernaout, M.W. Naceur, A. Aouabed, On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment, Desalination, 270 (2011) 9–22.
  130. B.K. Korbahti, N. Aktas, A. Tanyolac, Optimization of electrochemical treatment of industrial paint wastewater with response surface methodology, J. Hazard. Mater., 148 (2007) 83–90.
  131. F. Özyonar, Ö. Gökkuş, M. Sabuni, Removal of disperse and reactive dyes from aqueous solutions using ultrasoundassisted electrocoagulation, Chemosphere, 258 (2020) 127325, doi: 10.1016/j.chemosphere.2020.127325.
  132. K. Thirugnanasambandham, V. Sivakumar, M.J. Prakash, Performance evaluation and optimization of electrocoagulation process to treat grey wastewater, Desal. Water Treat., 55 (2014) 1703–1711.
  133. M. Kobya, E. Demirbas, O.T. Can, M. Bayramoglu, Treatment of levafix orange textile dye solution by electrocoagulation, J. Hazard. Mater., 132 (2006) 183–188.
  134. O.T. Can, M. Bayramoglu, M. Kobya, Decolorization of reactive dye solutions by electrocoagulation using aluminum electrodes, Ind. Eng. Chem. Res., 42 (2003) 3391–3396.
  135. K. Eryuruk, U.T. Un, U.B. Ogutveren, Electrochemical treatment of wastewaters from poultry slaughtering and processing by using iron electrodes, J. Cleaner Prod., 172 (2018) 1089–1095.
  136. A.S. Naje, S. Chelliapan, Z. Zakaria, S.A. Abbas, Enhancement of an electrocoagulation process for the treatment of textile wastewater under combined electrical connections using titanium plates, Int. J. Electrochem. Sci., 10 (2015) 4495–4512.
  137. M. Bayramoglu, M. Kobya, O.T. Can, M. Sozbir, Operating cost analysis of electrocoagulation of textile dye wastewater, Sep. Purif. Technol., 37 (2004) 117–125.
  138. B. Bejjany, B. Lekhlif, F. Eddaqaq, A. Dani, H. Mellouk, K. Digua, Treatment of the surface water by electrocoagulationelectroflotation process in internal loop airlift reactor: conductivity effect on turbidity removal and energy consumption, J. Mater. Environ. Sci., 8 (2017) 2757–2768.
  139. D. Ghosh, C.R. Medhi, H. Solanki, M.K. Purkait, Decolorization of crystal violet solution by electrocoagulation, J. Environ. Prot. Sci., 2 (2008) 25–35.
  140. A. Dalvand, M. Gholami, A. Joneidi, N.M. Mahmoodi, Dye removal, energy consumption and operating cost of electrocoagulation of textile wastewater as a clean process, Clean — Soil Air Water, 39 (2011) 665–672.
  141. M. Bharath, B.M. Krishna, K.B.P. Shiva, Electrocoagulation treatment for removal of color and chemical oxygen demand in landfill leachate using aluminum electrode, Int. J. Recent Technol. Eng., 8 (2019) 89–92.
  142. H. Ehsani, N. Mehrdadi, G. Asadollahfardi, G.N. Bidhendi, G. Azarian, A new combined electrocoagulation-electroflotation process for pretreatment of synthetic and real moquette-manufacturing industry wastewater: optimization of operating conditions, J. Environ. Chem. Eng., 8 (2020) 104263, doi:10.1016/j.jece.2020.104263.
  143. R. Shankar, L. Singh, P. Mondal, S. Chand, Removal of COD, TOC, and color from pulp and paper industry wastewater through electrocoagulation, Desal. Water Treat., 52 (2014) 7711–7722.
  144. B.K. Nandi, S. Patel, Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation, Arabian J. Chem., 10 (2017) S2961–S2968.
  145. J.K. Maghanga, F.K. Segor, L. Etiégni, J. Lusweti, Eectrocoagulation method for colour removal in tea effluent: a case study of Chemomi Tea Factory In rift Valley Kenya, Chem. Soc. Ethiop., 23 (2009) 371–381.
  146. S. Bayar, R. Boncukcuoğlu, A.E. Yilmaz, B.A. Fil, Pre-Treatment of pistachio processing industry wastewaters (PPIW) by electrocoagulation using Al plate electrode, Sep. Sci. Technol., 49 (2014) 1008–1018.
  147. K. Brahmi, W. Bouguerra, B. Hamrouni, E. Elaloui, M. Loungou, Z. Tlili, Investigation of electrocoagulation reactor design parameters effect on the removal of cadmium from synthetic and phosphate industrial wastewater, Arabian J. Chem., 12 (2019) 1848–1859.
  148. M. Kobya, M. Bayramoglu, M. Eyvaz, Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections, J. Hazard. Mater., 148 (2007) 311–318.
  149. C.T. Wang, W.L. Chou, Y.M. Kuo, Removal of COD from laundry wastewater by electrocoagulation/electroflotation, J. Hazard. Mater., 164 (2009) 81–86.
  150. M. Alimohammadi, M. Askari, M.H. Dehghani, A. Dalvand, R. Saeedi, K. Yetilmezsoy, B. Heibati, G. Mcky, Elimination of natural organic matter by electrocoagulation using bipolar and monopolar arrangements of iron and aluminum electrodes, Int. J. Environ. Sci. Technol., 14 (2017) 2125–2134.
  151. M. Nasrullah, L. Singh, S. Krishnan, M. Sakinah, A.W. Zularisam, Electrode design for electrochemical cell to treat palm oil mill effluent by electrocoagulation process, Environ. Technol. Innovation, 9 (2018) 323–341.
  152. F. Ozyonar, H. Muratcobanoglu, O. Gokkus, Taguchi approach for color removal using electrocoagulation with different electrode connection types, Fresenius Environ. Bull., 26 (2017) 7600–7607.
  153. S. Bellebia, S. Kacha, Z. Bouberka, A.Z. Bouyakoub, Z. Derriche, Color removal from acid and reactive dye solutions by electrocoagulation and electrocoagulation/adsorption processes, Water Environ. Res., 81 (2009) 382–393.
  154. F. Özyonar, M.U. Korkmaz, Sequential use of the electrocoagulation-electrooxidation processes for domestic wastewater treatment, Chemosphere, 290 (2022) 133172, doi: 10.1016/j.chemosphere.2021.133172.
  155. O. Sahu, Electro-oxidation and chemical oxidation treatment of sugar industry wastewater with ferrous material: an investigation of physicochemical characteristic of sludge, S. Afr. J. Chem. Eng., 28 (2019) 26–38.
  156. UT. Un, E. Aytac, Electrocoagulation in a packed bed reactor-complete treatment of color and cod from real textile wastewater, J. Environ. Manage., 123 (2013) 113–119.
  157. H. Afanga, H. Zazou, F.E. Titchou, Y. Rakhila, R.A. Akbour, A. Elmchaouri, J. Ghanbaja, M. Hamdani, Integrated electrochemical processes for textile industry wastewater treatment: system performances and sludge settling characteristics, Sustainable Environ. Res., 30 (2020) 2, doi: 10.1186/s42834-019-0043-2.
  158. A.S. Mohammed, A.E. Gendi, K.M.E. Khatib, S.H. Hassan, Treatment of textile wastewater by electrocoagulation method: case study; Odiba Textile, Dyeing & Finishing Company, Water Energy Food. Environ. J., 1 (2021) 41–53.
  159. S. Aoudj, A. Khelifa, N. Drouiche, M. Hecini, H. Hamitouche, Electrocoagulation process applied to wastewater containing dyes from textile industry, Chem. Eng. Process. Process Intensif., 49 (2010) 1176–1182.
  160. P.D. Usuga, F.G. Duque, R. Mosteo, M.V. Vazquez, G. Penuela, R.A. Torres-Palma, Experimental design approach applied to the elimination of crystal violet in water by electrocoagulation with Fe or Al electrodes, J. Hazard. Mater., 179 (2010) 120–126.
  161. D. Torregrossa, U. Leopold, F.H. Sancho, J. Hansen, Machine learning for energy cost modelling in wastewater treatment plants, J. Environ. Manage., 223 (2018) 1061–1067.
  162. P. Christoforidou, G. Bariamis, M. Iosifidou, E. Nikolaidou, P. Samaras, Energy benchmarking and optimization of wastewater treatment plants in Greece, Environ. Sci. Proc., 2 (2020) 1–8.
  163. H. Ehsani, N. Mehrdadi, G. Asadollahfardi, G.N. Bidhendi, G. Azarian, Continuous electrocoagulation process for pretreatment of high organic load moquette industry wastewater containing polyvinyl acetate: a pilot study, J. Environ. Anal. Chem., 102 (2022) 2260–2276.
  164. M. Kobya, E. Gengec, E. Demirbas, Operating parameters and costs assessments of a real dyehouse wastewater effluent treated by a continuous electrocoagulation process, Chem. Eng. Process. Process Intensif., 101 (2016) 87–100.
  165. M. Bayramoglu, M. Eyvaz, M. Kobya, Treatment of the textile wastewater by electrocoagulation: economical evaluation, Chem. Eng. J., 128 (2007) 155–161.
  166. A.G. Khorram, N. Fallah, Comparison of electrocoagulation and photocatalytic process for treatment of industrial dyeing wastewater: energy consumption analysis, Environ. Prog. Sustainable Energy, 39 (2020) 13288, doi: 10.1002/ep.13288.
  167. L. Bilińska, K. Blus, M. Gmurek, S. Ledakowicz, Coupling of electrocoagulation and ozone treatment for textile wastewater reuse, Chem. Eng. J., 358 (2019) 992–1001.
  168. S. Lee, K. Lee, M.W. Wan, Y. Choi, Comparison of membrane permeability and a fouling mechanism by pre-ozonation followed by membrane filtration and residual, Desalination, 178 (2005) 287–294.
  169. M.B.K. Suhan, S.B. Shuchi, A. Anis, Z. Haque, M.S. Islam, Comparative biodegradation study of Remazol black B dye using electro-coagulation and electro-Fenton process: kinetics and cost analysis, Environ. Nanotechnol. Monit. Manage., 14 (2020) 100335, doi: 10.1016/j.enmm.2020.100335.
  170. A. Aitbara, M. Cherifi, S. Hazourli, J.P. Leclerc, Continuous treatment of industrial dairy effluent by electrocoagulation using aluminum electrodes, Desal. Water Treat., 57 (2014) 3395–3404.
  171. W. Dąbrowski, R. Żyłka, M. Rynkiewicz, Evaluation of energy consumption in agro industrial wastewater treatment plant, J. Ecol. Eng., 17 (2016) 73–78.
  172. L.H. Andrade, F.D.S. Mendes, J.C. Espindola, M.C.S. Amaral, Reuse of dairy wastewater treated by membrane bioreactor and nanofiltration: technical and economic feasibility, Braz. J. Chem. Eng., 32 (2015) 735–747.
  173. O. Apaydin, E. Özkan, Landfill leachate treatment with electrocoagulation: optimization by using Taguchi method, Desal. Water Treat., 173 (2020) 65–76.
  174. D.R. Almeida, J.M.D.S. Couto, R.M. Gouvea, F.A. Oroski, D.M. Bila, B.R. Quintaes, J.C. Campos, Nanofiltration applied to the landfill leachate treatment and preliminary cost estimation, Waste Manage. Res., 38 (2020) 1–10.
  175. P. Cañizares, A.C. Beteta, L. Rodríguez, M.A. Rodrigo, Conductive-diamond electrochemial oxidation in the treatment of effluents from door manufacturing factories, J. Environ. Eng. Manage., 18 (2008) 183–191.
  176. B.A. Fıl, R. Boncukcuoğlu, A.E. Yilmaz, S. Bayar, Electrooxidation of pistachio processing industry wastewater using graphite anode, Clean — Soil Air Water, 42 (2014) 1232–1238.
  177. N. Dizge, C. Akarsu, Y. Ozay, H.E. Gulsen, S.K. Adiguzel, M.A. Mazmanci, Sono-assisted electrocoagulation and crossflow membrane processes for brewery wastewater treatment, J. Water Process Eng., 21 (2018) 52–60.
  178. Y. Wei, J. Yue, W. Zhang, Treatment of high concentration wastewater from an oil and gas field via a paired sequencing batch and ceramic membrane reactor, Int. J. Environ. Res. Public Health, 17 (2020) 1–11.
  179. C.M. Khor, J. Wang, L. Minghua, B.A. Oettel, R.B. Kaner, D. Jassby, E.M.V. Hoek, Performance, energy and cost of produced water treatment by chemical and electrochemical coagulation, Water, 12 (2020) 3426, doi:10.3390/w12123426.
  180. A.A. Sari, N. Suwanto, A.A. Asmara, N. Ariani, A.A.R. Setiawan, J.W. Waluyo, M. Muryanto, S. Sudarno, Performance evaluation and operation cost analysis of electrolytes application in electrocoagulation process applied to peat wastewater treatment, AIP Conf. Proc., 2175 (2019) 020038, doi: 10.1063/1.5134602.
  181. M. Elazzouzi, K. Haboubi, M.S. Elyoubi, Enhancement of electrocoagulation-flotation process for urban wastewater treatment using Al and Fe electrodes: techno-economic study, Mater. Today:. Proc., 13 (2019) 549–555.
  182. M. Elazzouzi, K. Haboubi, M.S. Elyoubi, A. El Kasmi, Development of a novel electrocoagulation anode for real urban wastewater treatment: experimental and modeling study to optimize operative conditions, Arabian J. Chem., 14 (2020) 102912, doi: 10.1016/j.arabjc.2020.11.018.
  183. A.S. Mahmoud, R.S. Farag, M.M. Elshfai, Reduction of organic matter from municipal wastewater at low cost using green synthesis nano iron extracted from black tea: Artificial intelligence with regression analysis, Egypt. J. Pet., 29 (2019) 9–20.
  184. A. Gasmi, M. Heran, A. Hannachi, A. Grasmick, Fouling analysis and biomass distribution on a membrane bioreactor under low ratio COD/N, Membr. Water Treat., 6 (2015) 263–276.
  185. G. Skouteris, T.C. Arnot, M. Jraou, F. Feki, S. Sayadi, Modeling energy consumption in membrane bioreactors for wastewater treatment in North Africa, Water Environ. Res., 86 (2014) 232–244.
  186. E.K.A. Solmaz, A. Birgu, G.E. Ustun, T. Yonar, Colour and COD removal from textile effluent by coagulation and advanced oxidation processes, Color. Technol., 122 (2006) 102–109.
  187. A.M. El-Dein, J. Libra, U. Wiesmann, Cost analysis for the degradation of highly concentrated textile dye wastewater with chemical oxidation H2O2/UV and biological treatment, J. Chem. Technol. Biotechnol., 81 (2006) 1239–1245.
  188. H.C.L. Geraldino, J.I. Simionato, T.K.F.S. Freitas, J.C. Garcia, N.E. Souza, Evaluation of the electrode wear and the residual concentration of iron in a system of electrocoagulation, Desal. Water Treat., 57 (2015) 13377–13387.
  189. B. Chezeau, L. Boudriche, C. Vial, A. Boudjemaa, Treatment of dairy wastewater by electrocoagulation process: advantages of combined iron/aluminum electrodes, Sep. Sci. Technol., 55 (2019) 2510–2527.
  190. M. Kobya, C. Ciftci, M. Bayramoglu, M.T. Sensoy, Study on the treatment of waste metal cutting fluids using electrocoagulation, Sep. Purif. Technol., 60 (2008) 285–291.
  191. G. Azarian, A.R. Rahmani, K.M. Masoudi, Z. Atashzaban, D. Nematollahi, New batch electro-coagulation process for treatment and recovery of high organic load and low volume egg processing industry wastewater, Process Saf. Environ. Prot., 119 (2018) 96–103.
  192. S.U. Demirer, N. Olson, R. Ives, J.P. Nshimyimana, Technoeconomic analysis of electrocoagulation on water reclamation and bacterial/viral indicator reductions of a high-strength organic wastewater—anaerobic digestion effluent, Sustainability, 12 (2020) 2697, doi: 10.3390/su12072697.
  193. F. Ozyonar, B. Karagozoglu, Investigation of technical and economic analysis of electrocoagulation process to treat of great and small cattle slaughterhouse wastewater, Desal. Water Treat., 52 (2014) 74–87.
  194. J.A. Gil, L. Túa, A. Rueda, B. Montaño, M. Rodríguez, Monitoring and analysis of the energy cost of an MBR, Desalination, 250 (2010) 997–1001.
  195. R.W. Réategui, D.L.V.F. Pino, J.L.G. Guevara, J.C. Torres, Benefits of electrocoagulation in treatment of wastewater: removal of Fe and Mn metals, oil and grease and COD: three case studies, Int. J. Appl. Eng. Res., 13 (2018) 6450–6462.
  196. A. Yasar, N. Ahmad, A.A. Khan, Energy requirement of ultraviolet and AOPs for the post-treatment of treated combined industrial effluent, Color. Technol., 122 (2006) 201–206.
  197. P. Krzeminski, J.H.M. Graaf, J.B. Lier, Specific energy consumption of membrane bioreactor (MBR) for sewage treatment, Water Sci. Technol., 65 (2012) 380–392.
  198. C. Phalakornkule, P. Sukkasem, C. Mutchimsattha, Hydrogen recovery from the electrocoagulation treatment of dye-containing wastewater, Int. J. Hydrogen Energy, 35 (2010) 10934–10943.
  199. E. Yuksel, M. Eyvaz, E. Gurbulak, Electrochemical treatment of colour index Reactive Orange 84 and textile wastewater by using stainless steel and iron electrodes, Environ. Prog. Sustainable Energy, 32 (2011) 60–68.