References
- J. Kheriji, D. Tabassi, B. Hamrouni, Removal of Cd(II) ions from
aqueous solution and industrial effluent using reverse osmosis
and nanofiltration membranes, Water Sci. Technol., 72 (2015)
1206–1216.
- H. Al-Zoubi, N. Hilal, N.A. Darwish, A.W. Mohammad
Rejection and modelling of sulphate and potassium salts by
nanofiltration membranes: neural network and Spiegler–Kedem model, Desalination, 206 (2007) 42–60.
- A.M. Hidalgo, G. Leon, M. Gomez, M.D. Murcia, E. Gomez,
J.L. Gomez, Application of the Spiegler–Kedem–Kachalsky
model to the removal of 4-chlorophenol by different
nanofiltration membranes, Desalination, 315 (2013) 70–75.
- Z.V.P. Murthy, L.B. Chaudhari, Separation of binary heavy metals
from aqueous solutions by nanofiltration and characterization
of the membrane using Spiegler–Kedem model, J. Chem. Eng.,
150 (2009) 181–187.
- A.L. Ahmad, M.F. Chong, S. Bhatia, Mathematical modeling
and simulation of the multiple solutes system for nanofiltration
process, J. Membr. Sci., 253 (2005) 103–115.
- L. Malaeb, G.M. Ayoub, Reverse osmosis technology for water
treatment: state of the art review, Desalination, 267 (2011) 1–8.
- A. Suárez, F.A. Riera Using the Spiegler–Kedem model to
predict solute rejection in the treatment of industrial UHT
condensates by reverse osmosis, Desal. Water Treat., 57 (2016)
24176–24186.
- O. Kedem, A. Katchalsky, Thermodynamic analysis of the
permeability of biological membranes
to non-electrolytes,
Biochem. Biophys. Acta, 27 (1958) 229–246.
- S. Jain, S.K. Gupta, Analysis of modified surface force pore flow
model with concentration polarization and comparison with
Spiegler–Kedem model in reverse osmosis systems, J. Membr.
Sci., 232 (2004) 45–62.
- J.J. Wu, On the application of the Spiegler–Kedem model to
forward osmosis, BMC Chem. Eng., 1 (2019) 1–15.
- J.J. Wu, R.W. field, On the understanding and feasibility of
“Breakthrough” osmosis, Sci. Rep., 9 (2019) 16464, doi: 10.1038/s41598-019-53417-6.
- I. Koyuncu, M. Yazgan, Application of nanofiltration and
reverse osmosis membranes to the salty and polluted surface
water, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst.
Environ. Eng., 36 (2000) 1321–1333.
- C. Rodrigues, A.I. Cavaco Morão, M.N. de Pinho, V. Geraldes,
On the prediction of permeate flux for nanofiltration of
concentrated aqueous solution with thin-film composite
polyamide membranes, J. Membr. Sci., 346 (2010) 1–7.
- Z.V.P. Murthy, S.K. Gupta, Estimation of mass transfer
coefficient using a combined nonlinear membrane transport
and film theory model, Desalination, 109 (1997) 39–49.
- J. Gilron, N. Gara, O. Kedem, Experimental analysis of negative
salt rejection in nanofiltration membranes, J. Membr. Sci.,
185 (2001) 223–236.
- W.R. Bowen, J.S. Welfoot, Modeling the performance of
membrane nonofiltration-critical assessment and model
development, Chem. Eng. Sci., 57 (2002) 1121–1137.
- S.Y. Vaidya, A.V. Simaria, Z.V.P Murthy, Reverse osmosis
transport model evaluation: a new approach, Indian Chem.
Eng., 8 (2001) 335–343.
- A.M. Hidalgo, G. León, M. Gómez, M.D. Murcia, E. Gómez,
J.L. Gómez, Application of the Spiegler–Kedem–Kachalsky
model to the removal of 4-chlorophenol by different
nanofiltration membranes, Desalination, 315 (2013) 70–75.
- F. Ahmed, Modified Spiegler–Kedem Model to Predict the
Rejection and Flux of Nanofiltration Processes at High NaCl
Concentrations, MSc. Thesis, University of Ottawa, 2013.
- A.E. Yaroshchuc, Solution–diffusion–imperfection model
revised, J. Membr. Sci., 101 (1995) 83–87.