References

  1. S. Hu, Y. Guan, W. Yun, H. Han, Nano-magnetic catalyst KF/CaO-Fe3O4 for biodiesel production, Appl. Energy, 88 (2011) 2685–2690.
  2. Q. Li, H. Song, Y. Ye, F. Pan, D. Zhang, D. Xia, A green designed copper-resin composite for highly efficient catalytic reduction of 4-nitrophenol, Colloid Interface Sci. Commun., 42 (2021) 100407, doi:10.1016/j.colcom.2021.100407.
  3. P.S. Silva, B.C. Gasparini, H.A. Magosso, A. Spinell, Gold nanoparticles hosted in a water-soluble silsesquioxane polymer applied as a catalytic material onto an electrochemical sensor for detection of nitrophenol isomers, J. Hazard. Mater., 273 (2014) 70–77.
  4. J. Li, C. Liu, Y. Liu, Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of
    4-nitrophenol, J. Mater. Chem., 22 (2012) 8426–8430.
  5. M. Guo, J. He, Y. Li, S. Ma, X. Sun, One-step synthesis of hollow porous gold nanoparticles with tunable particle size for the reduction of 4-nitrophenol, J. Hazard. Mater., 310 (2016) 89–97.
  6. S. Gao, Z. Zhang, K. Liu, B. Dong, Direct evidence of plasmonic enhancement on catalytic reduction of
    4-nitrophenol over silver nanoparticles supported on flexible fibrous networks, Appl. Catal., B, 188 (2016) 245–252.
  7. D. Berillo, Gold nanoparticles incorporated into cryogel walls for efficient nitrophenol conversion, J. Cleaner Prod., 247 (2019)119089, doi: 10.1016/j.jclepro.2019.119089.
  8. T. Yu, J. Zeng, B. Lim, Y. Xia, Aqueous-phase synthesis of Pt/CeO2 hybrid nanostructures and their catalytic properties, Adv. Mater., 22 (2010) 5188–5192.
  9. M.M. Ayad, W.A. Amer, S. Zaghlol, N. Maráková, J. Stejskal, Polypyrrole-coated cotton fabric decorated with silver nanoparticles for the catalytic removal of p-nitrophenol from water, Cellulose, 25 (2018) 7393–7407.
  10. J. Zhu, X. Zhang, Z. Qin, L. Zhang, Y. Ye, M. Cao, L. Gao, T. Jiao, Preparation of PdNPs doped chitosan-based composite hydrogels as highly efficient catalysts for reduction of 4-nitrophenol, Colloids Surf., A, 611 (2020) 125889, doi: 10.1016/j.colsurfa.2020.125889.
  11. M. Nasrollahzadeh, S.M. Sajadi, A. Rostami-Vartooni, M. Bagherzadeh, R. Safari, Immobilization of copper nanoparticles on perlite: green synthesis, characterization and catalytic activity on aqueous reduction of
    4-nitrophenol, J. Mol. Catal. A: Chem., 400 (2015) 22–30.
  12. L. Hang, Y. Zhao, H. Zhang, G. Liu, L. Qu, Copper nanoparticle@ graphene composite arrays and their enhanced catalytic performance, Acta Mater., 105 (2016) 59–67.
  13. L. Jin, G. He, J. Xue, T. Xu, H. Chen, Cu/graphene with high catalytic activity prepared by glucose blowing for reduction of p-nitrophenol, J. Cleaner Prod., 161 (2017) 655–662.
  14. S.B. Khan, F. Ali, K. Akhtar, Chitosan nanocomposite fibers supported copper nanoparticles based perceptive sensor and active catalyst for nitrophenol in real water, Carbohydr. Polym., 207 (2019) 650–662.
  15. X.J. Bai, D. Chen, Y.N. Li, X.M. Yang, M.Y. Zhang, T.Q. Wang, X.M. Zhang, L.Y. Zhang, Y. Fu, X. Qi, W. Qi,
    Two-dimensional MOF-derived nanoporous Cu/Cu2O networks as catalytic membrane reactor for the continuous reduction of p-nitrophenol, J. Membr. Sci., 582 (2019) 30–36.
  16. Y. Feng, T. Jiao, J. Yin, L. Zhang, L. Zhang, J. Zhou, Q. Peng, Facile preparation of carbon nanotube-Cu2O nanocomposites as new catalyst materials for reduction of p-nitrophenol, Nanoscale Res. Lett., 14 (2019) 78, doi: 10.1186/s11671-019-2914-1.
  17. D. Raghunath, S. Venkata Satyanarayana, P. Hugues Kamdem, B. Madhumita, M. Vinesh. M. Arjun, Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/Ag) as highly active catalyst towards reduction of
    4-nitrophenol and toxic organic dyes, Appl. Catal., B, 244 (2019) 546–558.
  18. F. Jie, L. Su, Y. Ma, C. Ren, Q. Guo, X. Chen, J. Feng, L. Su, Y. Ma, C. Ren, CuFe2O4 magnetic nanoparticles: a simple and efficient catalyst for the reduction of nitrophenol, Chem. Eng. J., 221 (2013) 16–24.
  19. C. Dey, D. De, M. Nandi, M. Goswami, A high performance recyclable magnetic CuFe2O4 nanocatalyst for facile reduction of 4-nitrophenol, Mater. Chem. Phys., 242 (2020) 122237, doi:10.1016/j.matchemphys.2019.122237.
  20. R. Ghorbani-Vaghei, H. Veisi, M.H. Aliani, P. Mohammadi, B. Karmakar, Alginate modified magnetic nanoparticles to immobilization of gold nanoparticles as an efficient magnetic nanocatalyst for reduction of
    4-nitrophenol in water, J. Mol. Liq., 327 (2020) 114868, doi: 10.1016/j.molliq.2020.114868.
  21. B.C. Filiz, The role of catalyst support on activity of copper oxide nanoparticles for reduction of 4-nitrophenol, Adv. Powder Technol., 31(2020) 3845–3859.
  22. M. Nasrollahzadeh, M. Atarod, S.M. Sajadi, Green synthesis of the Cu/Fe3O4 nanoparticles using Morinda morindoides leaf aqueous extract: a highly efficient magnetically separable catalyst for the reduction of organic dyes in aqueous medium at room temperature, Appl. Surf. Sci., 364 (2016) 636–644.
  23. M. Sajjadi, M. Nasrollahzadeh, M.R. Tahsili, Catalytic and antimicrobial activities of magnetic nanoparticles supported N-heterocyclic palladium(II) complex: a magnetically recyclable catalyst for the treatment of environmental contaminants in aqueous media, Sep. Purif. Technol., 227 (2019) 115716, doi:10.1016/j.seppur.2019.115716.
  24. L. Yang, C.S. Chen, Y.J. Tu, Y.H. Huang, Z. Hui, Heterogeneous degradation of organic pollutants by persulfate activated by CuO-Fe3O4: mechanism, stability, and effects of pH and bicarbonate ions, Environ. Sci. Technol., 49 (2015) 6838–6845.
  25. W. Li, B. Liu, Y. Wu, Y. Gao, S. Xing, Removal of ciprofloxacin by persulfate activation with CuO:
    a pH-dependent mechanism, Chem. Eng. J., 382 (2019) 122837, doi: 10.1016/j.cej.2019.122837.
  26. M.V. Morales, M. Rocha, C. Freire, E. Asedegbega-Nieto, E. Gallegos-Suarez, I. Rodríguez-Ramos,
    A. Guerrero-Ruiz, Development of highly efficient Cu versus Pd catalysts supported on graphitic carbon materials for the reduction of 4-nitrophenol to 4-aminophenol at room temperature, Carbon, 111 (2017) 150–161.
  27. Q. Li, W. Tao, A. Li, Q. Zhou, C. Shuang, Poly(4-vinylpyridine) catalyzed isomerization of maleic acid to fumaric acid, Appl. Catal., A, 484 (2014) 148–153.
  28. T. Wi-Afedzi, F.Y. Yeoh, M.T. Yang, A. Yip, L. Andrew, A comparative study of hexacyanoferrate-based Prussian blue analogue nanocrystals for catalytic reduction of 4-nitrophenol to 4-aminophenol, Sep. Purif. Technol., 218 (2019) 138–145.