References

  1. A. Fernández Cirelli, El agua: un recurso esencial, Química Viva, 11 (2012) 147–170. Available at: https://www.redalyc.org/articulo.oa?id=86325090002
  2. L. Schweitzer, J. Noblet, Chapter 3.6 – Water Contamination and Pollution, B. Török, T. Dransfield, Eds., Green Chemistry: An Inclusive Approach, Elsevier, Boston, MA, USA, 2018, pp. 261–290,
    doi:10.1016/B978-0-12-809270-5.00011-X.
  3. P.H. Gleick, The human right to water, Water Policy, 1 (1998) 487–503.
  4. L. Sala, M. Serra, Towards sustainability in water recycling, Water Sci. Technol., 50 (2004) 1–8.
  5. B. Barraqué, Past and future sustainability of water policies in Europe, Nat. Resour. Forum, 27 (2003) 200–211.
  6. M. Gavrilescu, K. Demnerová, J. Aamand, S. Agathos, F. Fava, Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation, New Biotechnol., 32 (2014) 147–156.
  7. C.G. Daughton, Non-regulated water contaminants: emerging research, Environ. Impact Assess. Rev., 24 (2004) 711–732.
  8. C. Tejada, E. Quiñonez, M. Peña, Contaminantes Emergentes en Aguas: metabolitos de Fármacos. Una Revisión, Rev. Fac. Cien. Básicas, 10 (2014) 80, doi: 10.18359/rfcb.341.
  9. V. Geissen, Emerging pollutants in the environment: a challenge for water resource management, Int. Soil Water Conserv. Res., 3 (2015) 57–65.
  10. A.R. Clemente, E.L. Chica Arrieta, G.A. Peñuela Mesa, Procesos de tratamiento de aguas residuales para la eliminación de contaminantes orgánicos emergentes, Rev. Ambient. Agua, 8 (2013) 93–103.
  11. X. Liu, X. Guo, Y. Liu, B. Xi, J. Zhang, Z. Wang, B. Bi, A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: performance and microbial response, Environ. Pollut., 254 (2019) 112996, doi: 10.1016/j.envpol.2019.112996.
  12. J. Zur, J. Michalska, A. Piński, A. Mrozik, A. Nowak, Effects of low concentration of selected analgesics and successive bioaugmentation of the activated sludge on its activity and metabolic diversity, Water (Switzerland), 12 (2020) 1133, doi: 10.3390/W12041133.
  13. R.M. Briones, A.K. Sarmah, L.P. Padhye, A global perspective on the use, occurrence, fate and effects of anti-diabetic drug metformin in natural and engineered ecosystems, Environ. Pollut., 219 (2016) 1007–1020.
  14. P.A. Przybylińska, M. Wyszkowski, Environmental contamination with phthalates and its impact on living organisms, Ecol. Chem. Eng. S, 23 (2016) 347–356.
  15. F. Ferrara, E. Funari, E. de Felip, G. Donati, M.E. Traina, A. Mantovani, Alkylphenols: assessment of risks for aquatic ecosystems and for human health with particular reference to endocrine effects, Ann Ist Super Sanita., 37 (2001) 615–625.
  16. M. Hossein, O. Chande, F. Ngassapa, M. Eunice, Chapter 4 – Exposure to 1,4-Dioxane and Disinfection
    By-Products Due to the Reuse of Wastewater, H. Sarma, D.C. Dominguez, W.Y. Lee, Eds., Emerging Contaminants in the Environment: Challenges and Sustainable Practices, Elsevier, El Paso, Texas, USA and Boston, MA, USA, 2022, pp. 87–109. doi: 10.1016/B978-0-323-85160-2.0000.
  17. J. Liu, L. Zhang, G. Lu, R. Jiang, Z. Yan, Y. Li, Occurrence, toxicity and ecological risk of Bisphenol A analogues in aquatic environment – a review, Ecotoxicol. Environ. Saf., 208 (2021) 111481, doi:10.1016/j.ecoenv.2020.111481.
  18. M.J. Gil, A.M. Soto, J.I. Usma, O.D. Gutiérrez, Emerging contaminants in waters: effects and possible treatments, Rev. P+L, 7 (2012) 52–73.
  19. WHO, Pharmaceuticals in Drinking-Water, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland, 2012. Available at: https://www.who.int/publications/m/item/ information-sheet-pharmaceuticals-in-drinking-water (Accessed May 8, 2022).
  20. P.L. Lallas, The Stockholm Convention on Persistent Organic Pollutants, AJIL, 95 (2001) 692–708, doi:10.2307/2668517.
  21. D. Leipziger, The Rio Declaration on Environment and Development, The Corporate Responsibility Code Book, 2017. Available at: http://dx.doi.org/10.4324/9781351278881-18
  22. A. Badry, G. Treu, G. Gkotsis, M.C. Nika, N. Alygizakis, N.S. Thomaidis, C.C. Voigt, O. Krone, Ecological and spatial variations of legacy and emerging contaminants in whitetailed sea eagles from Germany: implications for prioritisation and future risk management, Environ. Int., 158 (2022) 106934, doi:10.1016/j.envint.2021.106934.
  23. M. Wu, D. Atchley, S. Janssen, D. Rosenberg, J. Sass, Dosed without prescription: a framework for preventing pharmaceutical contamination of our nation’s drinking water, Environ. Sci. Technol., 45 (2011) 366–367.
  24. Infac, Farmacontaminación. Impacto ambiental de los medicamentos, Información farmacoterapéuta de la comarca, 24 (2016) 60–61.
  25. X.X. Zhang, T. Zhang, H.H.P. Fang, Antibiotic resistance genes in water environment, Appl. Microbiol. Biotechnol., 82 (2009) 397–414.
  26. I. Quesada Peñate, H. Delmas, U. Javier Jáuregui Haza, A.M. Wilhelm, Contaminación de las aguas con productos farmaceuticos. Estrategias para enfrentar la problemática, Revista CENIC: Ciencias Biológicas, 40 (2009) 173–179.
  27. K. Kümmerer, Antibiotics in the aquatic environment – a review – Part II, Chemosphere, 75 (2009) 435–441.
  28. J. Gatica, E. Cytryn, Impact of treated wastewater irrigation on antibiotic resistance in the soil microbiome, Environ. Sci. Pollut. Res., 20 (2013) 3529–3538.
  29. R. Vignoli, V. Seija, Principales Mecanismos de Resistencia antibiótica, Temas de bacteriología y Virología Médica, Mecanismos de resistencia antibiótica, Instituto de Higiene, 2008, pp. 649–662.
  30. F. Valery, M. Miranda, A. Espósito, G. Maggi, E. Spadola, Resistencia a penicilina y cefalosporinas de tercera generación en cepas de Streptococcus Pneumoniae, Archivos Venezolanos de Puericultura y Pediatría, 68 (2005) 177–185.
  31. M.J. Struelens, O. Denis, H. Rodriguez-Villalobos, M. Hallin, The threat of antibiotic resistance: origin, impact and public health perspectives, Rev. Med. Brux., 28 (2007) 24–48.
  32. M. Lobanovska, G. Pilla, Fluctuation-dominated kinetics in diffusion-controlled reactions, Yale J. Biol. Med., 90 (2017) 135–145.
  33. G. Dumancas, R. Hikkaduwa, E. Mojica, B. Murdianti, P. Pham, Penicillins, Encyclopedia of Toxicology,
    P. Wexler, A. Mohammad, A. de Peyster, Eds, Elsevier, US National Library of Medicine, Bethesda, MD, USA, 2014.
  34. D. Li, M. Yang, J. Hu, Y. Zhang, H. Chang, F. Jin, Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river, Water Res., 42 (2008) 307–317.
  35. H. Gelband, P.M. Miller, P. Suraj, S. Gandra, J. Levinson, D. Barter, A. White, R. Laxminarayan, State of the World’s Antibiotics 2015, WHSA, 8 (2015) 30–34, doi: 10.10520/EJC180082.
  36. Y. Doi, H.F. Chambers, Penicillins and β-Lactamase Inhibitors, J.E. Bennett, R. Dolin, M.J. Blaser, Eds., Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, Elsevier, 2015. Available at: https://doi.org/10.1016/ B978-1-4557-4801-3.00020-5
  37. E.L. Miller, The penicillins: a review and update, J. Midwifery Womens Health, 47 (202) 426–434.
  38. F. Prestinaci, P. Pezzotti, A. Pantosti, Antimicrobial resistance: a global multifaceted phenomenon, Pathog. Global Health, 109 (2015) 309–318.
  39. J.I. Alós, Antibiotic resistance: a global crisis, Enferm. Infecc. Microbiol. Clin., 33 (2015) 692–699.
  40. Centro Nacional de Información Biotecnológica, Resumen de compuestos de PubChem para CID 23668834, Penicilina G Sódica, PubChem Database, 2021. Available at: https:// pubchem.ncbi.nlm.nih.gov/compound/Penicillin-G-sodium (Accessed Jan. 3, 2021).
  41. P. Bosch, I. Schifter, La zeolita una piedra que hierve, D.R.©1988 FONDO DE CULTURA ECONÓMICA, S.A. DE C.V. México: Fondo de Cultura Económica, Carretera Picacho-Ajusco 227, 14200 México, D.F, 1998.
  42. N. Taufiqurrahmi, A.R. Mohamed, S. Bhatia, Nanocrystalline zeolite Y: synthesis and characterization, IOP Conf. Ser.: Mater. Sci. Eng., 17 (2011) 012030, doi: 10.1088/1757-899X/17/1/012030.
  43. E. Johan, T. Yamada, M.W. Munthali, P. Kabwadza-Corner, H. Aono, N. Matsue, Natural zeolites as potential materials for decontamination of radioactive cesium, Procedia Environ. Sci., 28 (2015) 52–56.
  44. Y. Li, L. Li, J. Yu, Applications of zeolites in sustainable chemistry, Chem, 3 (2017) 928–949.
  45. W. Lutz, Zeolite Y: synthesis, modification, and properties – a case revisited, Adv. Mater. Sci. Eng., 2014 (2014) 20, doi: 10.1155/2014/724248.
  46. K. Margeta, N. Zabukovec Logar, M. Siljeg, A. Farkas, Chapter 5: Natural Zeolites in Water Treatment – How Effective is Their Use, W. Elshorbagy, R. Kabir Chowdhury, Eds., Water Treatment, InTechOpen, 2013, doi:10.5772/50738.
  47. E.K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, S. Ismadji, Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics, Water Res., 43 (2009) 2419–2430.
  48. N. Genç, E.C. Dogan, Adsorption kinetics of the antibiotic ciprofloxacin on bentonite, activated carbon, zeolite, and pumice, Desal. Water Treat., 53 (2015) 785–793.
  49. T.M.S. Attia, X. Lin Hu, Y.D. Qiang, Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies, Chemosphere, 93 (2013) 2076–2085.
  50. A. Martucci, L. Pasti, N. Marchetti, A. Cavazzini, F. Dondi, A. Alberti, Adsorption of pharmaceuticals from aqueous solutions on synthetic zeolites, Microporous Mesoporous Mater., 148 (2012) 174–183.
  51. M. Liu, L.A. Hou, S. Yu, B. Xi, Y. Zhao, X. Xia, MCM-41 impregnated with A zeolite precursor: synthesis, characterization and tetracycline antibiotics removal from aqueous solution, Chem. Eng. J., 223 (2013) 678–687.
  52. A. Rahimi, B. Bayati, M. Khamforoush, Synthesis and application of Cu-X zeolite for removal of antibiotic from aqueous solution: process optimization using response surface methodology, Arabian J. Sci. Eng., 44 (2019) 5381–5397.
  53. P. Szabová, M. Plekancová, N. Gróf, I. Bodík, Slovak natural zeolites as a suitable medium for antibiotics elimination from wastewater, Acta Chim. Slov., 12 (2019) 163–167.
  54. M. Fischer, Simulation-based evaluation of zeolite adsorbents for the removal of emerging contaminants, Adv. Mater., 1 (2020) 86–98.
  55. A. Rossner, S.A. Snyder, D.R.U. Knappe, Removal of emerging contaminants of concern by alternative adsorbents, Water Res., 43 (2009) 3787–3796.
  56. Suhartana, E. Sukmasari, C. Azmiyawati, Modification of natural zeolite with Fe(III) and its application as adsorbent chloride and carbonate ions, IOP Conf. Ser.: Mater. Sci. Eng., 349 (2018) 012075, doi:10.1088/1757-899X/349/1/012075.
  57. H. Nourmoradi, A. Daneshfar, S. Mazloomi, J. Bagheri, S. Barati, Removal of penicillin G from aqueous solutions by a cationic surfactant modified montmorillonite, Methods X, 6 (2019) 1967–1973.
  58. J. Zhang, Z. Xiong, J. Wei, Y. Song, Y. Ren, D. Xu, B. Lai, Catalytic ozonation of penicillin G using cerium-loaded natural zeolite (CZ): efficacy, mechanisms, pathways and toxicity assessment, Chem. Eng. J., 383 (2020) 123144, doi: 10.1016/j.cej.2019.123144.
  59. E. Xingu-Contreras, G. García-Rosales, I. García-Sosa, A. Cabral-Prieto, M. Solache-Ríos, Characterization of natural zeolite clinoptilolite for sorption of contaminants, Hyperfine Interact., 232 (2015) 7–18.
  60. A. Salama, N. Shukry, V. Guarino, Chapter 6 – Polysaccharide- Based Hybrid Materials for Molecular Release Applications, V. Guarino, M. Iafisco, S. Sprian, Eds., Nanostructured Biomaterials for Regenerative Medicine: Woodhead Publishing Series in Biomaterials, Woodhead Publishing, 2019, pp. 165–201,
    doi: 10.1016/B978-0-08-102594-9.00006-1.
  61. Y.M. Vargas-Rodríguez, V. Gómez-Vidales, E. Vázquez- Labastida, A. García-Bórquez, G. Aguilar-Sahagún, H. Murrieta- Sánchez, M. Salmón, Caracterización espectroscópica, química y morfológica y propiedades superfi ciales de una montmorillonita mexicana, Rev. Mex. Cienc. Geol., 25 (2008) 135–144.
  62. C. Zhou, D. Tong, W. Yu, Chapter 7 – Smectite Nanomaterials: Preparation, Properties, and Functional Applications, A. Wang, W. Wang, Eds., Nanomaterials from Clay Minerals: A New Approach to Green Functional Materials Micro and Nano Technologies, Elsevier Inc., Publishing, China, 2019,
    doi: 10.1016/ B978-0-12-814533-3.00007-7.
  63. I. Arvanitopyannis, I. Eleftheriadis, E. Tsatsaroni, Influence of pH adsorption of dye-containing effluents with different bentonites, Chemosphere, 18 (1989) 1707–1711.
  64. E. Erdem, N. Karapinar, R. Donat, The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci., 280 (2004) 309–314.
  65. Z. Abaei, H. Faghihian, N. Esmaeeli, Preparation and application of zeolitic adsorbents for removal of fuoride from aqueous solution; equilibrium, kinetic and thermodynamic studies, Der Chemica Sinica, 8 (2017) 524–534.
  66. E. Allahkarami, B. Rezai, Removal of cerium from different aqueous solutions using different adsorbents:
    a review, Process Saf. Environ. Prot., 124 (2019) 345–362.
  67. J.S.C. Celina, O.G.M. Teresa, D.N.M. del Carmen, Adsorción de colorantes azul vegetal y azul acuarela por zeolitas naturales modificadas con surfactantes, XIX Congreso Técnico Científico ININ-SUTIN 2009, 2009.
  68. J. Choi, W.S. Shin, Removal of salicylic and ibuprofen by hexadecyltrimethylammonium-modified montmorillonite and zeolite, Minerals, 10 (2020) 1–15.
  69. L. Guocheng, C.W. Pearce, A. Gleason, L. Liao, M.P. MacWilliams, Z. Li, Influence of montmorillonite on antimicrobial activity of tetracycline and ciprofloxacin, J. Asian Earth Sci., 77 (2013) 281–286.
  70. J.G. Carriazo, M.J. Saavedra, M.F. Molina, Adsorption properties of an activated carbon and determination of Langmuir’s equation using low cost materials, Educ. Quím., 21 (2010) 224–229.
  71. A. Colín Cruz, Obtención de un carbón activado proveniente de la pirólisis de lodos residuales y su evaluación como material de sorción, Universidad Autónoma del Estado de México, 2007.
  72. C.Y. Yin, M.K. Aroua, W.M.A.W. Daud, Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions, Sep. Purif. Technol., 52 (2007) 403–415.
  73. S. Wong, N. Ngadi, I.M. Inuwa, O. Hassan, Recent advances in applications of activated carbon from biowaste for wastewater treatment: a short review, J. Cleaner Prod., 175 (2018) 361–375.
  74. H. Li, J. Hu, C. Wang, X. Wang, Removal of amoxicillin in aqueous solution by a novel chicken feather carbon: kinetic and equilibrium studies, Water Air Soil Pollut., 228 (2017) 201, doi: 10.1007/s11270-017-3385-6.
  75. M.J. Ahmed, S.K. Theydan, Microporous activated carbon from Siris seed pods by microwave-induced KOH activation for metronidazole adsorption, J. Anal. Appl. Pyrolysis, 99 (2013) 101–109.
  76. G. Li, D. Zhang, M. Wang, J. Huang, L. Huang, Preparation of activated carbons from Iris tectorum employing ferric nitrate as dopant for removal of tetracycline from aqueous solutions, Ecotoxicol. Environ. Saf., 98 (2013) 273–282.
  77. L. Huang, M. Wang, C. Shi, J. Huang, B. Zhang, Adsorption of tetracycline and ciprofloxacin on activated carbon prepared from lignin with H3PO4 activation, Desal. Water Treat., 52 (2014) 2678–2687.
  78. H.R. Pouretedal, N. Sadegh, Effective removal of amoxicillin, cephalexin, tetracycline and penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood, J. Water Process Eng., 1 (2014) 64–73.
  79. L. Huang, C. Shi, B. Zhang, S. Niu, B. Gao, Characterization of activated carbon fiber by microwave heating and the adsorption of tetracycline antibiotics, Sep. Sci. Technol. (Philadelphia), 48 (2013) 1356–1363.
  80. Y. Chen, J. Shi, Q. Du, H. Zhang, Y. Cui, Antibiotic removal by agricultural waste biochars with different forms of iron oxide, RSC Adv., 9 (2019) 14143–14153.
  81. D. Balarak, A.H. Mahvi, S. Shahbaksh, M.A. Wahab, A. Abdala, Adsorptive removal of azithromycin antibiotic from aqueous solution by Azolla filiculoides-based activated porous carbon, Nanomaterials, 11 (2021) 3281, doi: 10.3390/nano11123281.
  82. Z. Aksu, Ö. Tunç, Application of biosorption for penicillin G removal: comparison with activated carbon, Process Biochem., 40 (2005) 831–847.
  83. C.O. Ania, J.G. Pelayo, T.J. Bandosz, Reactive adsorption of penicillin on activated carbons, Adsorption, 17 (2011) 421–429.
  84. J. Luque, G. Elena, J. Armengol, J. Legorburu, Las enfermedades de la madera de la vid: reflexiones sobre un panorama complejo, Vid Transferencia tecnológica, 260 (2014) 18–22.
  85. P. Singh, V.K. Singh, R. Singh, A. Borthakur, S. Madhav, A. Ahamad, A. Kumar, D.B. Pal, D. Tiwary, P.K. Mishra, Chapter 1 – Bioremediation: A Sustainable Approach for Management of Environmental Contaminants,
    P. Singh, A. Kumar, A. Borthakur, Eds., Abatement of Environmental Pollutants: Trends and Strategies, Elsevier Inc. Publishing, 2020, pp. 1–23. doi: 10.1016/B978-0-12-818095-2.00001-1.
  86. J.C. Silva, L. Morante, C.J. Moreno, N.A. Cuizano, A.E. Navarro, B.P. Llanos, Enhancement of the adsorptive properties of biomaterials by chemical modification for the elimination of antibiotics, Rev. Soc. Quím. Perú, 84 (2018) 183–196.
  87. M. Rathod, S. Haldar, S. Basha, Nanocrystalline cellulose for removal of tetracycline hydrochloride from water via biosorption: equilibrium, kinetic and thermodynamic studies, Ecol. Eng., 84 (2015) 240–249.
  88. X. Yang, H. Wei, C. Zhu, B. Geng, Biodegradation of atrazine by the novel Citricoccus sp. strain TT3, Ecotoxicol. Environ. Saf., 147 (2018) 144–150.
  89. L. Pan, J. Li, C. Li, X. Tang, G. Yu, Y. Wang, Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge, J. Hazard. Mater., 343 (2018) 59–67.
  90. J.Q. Xiong, M.B. Kurade, B.H. Jeon, Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris, Chem. Eng. J., 313 (2017) 1251–1257.
  91. P. Wang, C. Shen, X. Wang, S. Liu, L. Li, J. Guo, Biodegradation of penicillin G from industrial bacteria residue by immobilized cells of Paracoccus sp. KDSPL-02 through continuous expanded bed adsorption bioreactor, J. Biol. Eng., 14 (2020), doi: 10.1186/s13036-020-0229-5.
  92. P. Wang, H. Liu, H. Fu, X. Cheng, B. Wang, Q. Cheng, J. Zhang P. Zou, Characterization and mechanism analysis of penicillin G biodegradation with Klebsiella pneumoniae Z1 isolated from waste penicillin bacterial residue, J. Ind. Eng. Chem., 27 (2015) 50–58.
  93. P. Mullai, S. Arulselvi, H.H. Ngo, P.L. Sabarathinam, Experiments and ANFIS modelling for the biodegradation of penicillin-G wastewater using anaerobic hybrid reactor, Bioresour. Technol., 102 (2011) 5492–5497.
  94. A. Al-Ahmad, F.D. Daschner, K. Kümmerer, Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria, Arch. Environ. Contam. Toxicol., 37 (1999) 158–163.
  95. E.U. Cokgor, O. Karahan, I. Arslan-Alaton, S. Meric, H. Saruhan, D. Orhon, Effect of perozonation on biodegradability and toxicity of a penicillin formulation effluent, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 41 (2006) 1887–1897.
  96. S. Hammarstrom, J.L. Strominger, Degradation of penicillin G to phenylacetylglycine by D-alanine carboxypeptidase from Bacillus stearothermophilus (gas–liquid chromatography/mass spectrometry/infrared spectroscopy), Proc. Natl. Acad. Sci. U.S.A., 72 (1975) 3463–3467, doi: 10.1073/pnas.72.9.3463.
  97. D. Balarak, F. Mostafapour, A. Joghataei, Experimental and kinetic studies on penicillin G adsorption by Lemna minor, Br. J. Pharm. Res., 9 (2016) 1–10, doi: 10.9734/bjpr/2016/22820.
  98. M. Kumar, S. Jaiswal, K.K. Sodhi, P. Shree, D.K. Singh, P.K. Agrawal, P. Shukla, Antibiotics bioremediation: perspectives on its ecotoxicity and resistance, Environ. Int., 124 (2019) 448–461.
  99. P. Gharbani, A. Mehrizad, I. Jafarpour, Adsorption of penicillin by decaffeinated tea waste, Pol. J. Chem. Technol., 17 (2015) 95–99.
  100. S. Chavoshan, M. Khodadadi, N. Nasseh, A.H. Panahi, A. Hosseinnejad, Investigating the efficiency of single-walled and multi-walled carbon nanotubes in removal of penicillin G from aqueous solutions, Environ. Health Eng. Manage., 5 (2018) 187–196.
  101. F. Masoudi, M. Kamranifar, A. Naghizadeh, The efficiency of chitosan extracted from Persian gulf shrimp shell in removal of penicillin G antibiotic from aqueous environment, Iran. J. Chem. Chem. Eng, 29 (2020) 235–244.
  102. M. Akbulut, Selective removal of penicillin G from environmental water samples by using molecularly imprinted membranes, Hittite J. Sci. Eng., 7 (2020) 329–337.
  103. I. Aranaz, A.R. Alcántara, M.C. Civera, C. Arias, B. Elorza, A. Heras Caballero, N. Acosta, Chitosan: an overview of its properties and applications, Polymers (Basel), 13 (2021) 3256, doi: 10.3390/polym13193256.
  104. N. Anzar, R. Hasan, M. Tyagi, N. Yadav, J. Narang, Carbon nanotube – a review on synthesis, properties and plethora of applications in the field of biomedical science, Sensors Int., 1 (2020) 100003, doi:10.1016/j.sintl.2020.100003.
  105. S. Mustapha, M.M. Ndamitso, A.S. Abdulkareem, J.O. Tijani, A.K. Mohammed, D.T. Shuaib, Potential of using kaolin as a natural adsorbent for the removal of pollutants from tannery wastewater, Heliyon, 5 (2019) 02923, doi: 10.1016/j. heliyon.2019.e02923.
  106. J.L. Wang, L.J. Xu, Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application, Crit. Rev. Env. Sci. Technol., 42 (2012) 251–325.
  107. J.E. Forero, O.P. Ortiz, F. Rios, Advanced oxidation processes as phenol treatment in industrial sewage,
    CT&F – Ciencia, Tecnología y Futuro, 3 (2005) 97–109.
  108. S. Moles, R. Mosteo, J. Gómez, J. Szpunar, S. Gozzo, J.R. Castillo, M.P. Ormad, Towards the removal of antibiotics detected in wastewaters in the POCTEFA territory: occurrence and TiO2 photocatalytic pilot-scale plant performance, Water, 12 (2020) 1453, doi: 10.3390/w12051453.
  109. R. Andreozzi, R. Marotta, G. Pinto, A. Pollio, Carbamazepine in water: persistence in the environment, ozonation treatment and preliminary assessment on algal toxicity, Water Res., 36 (2002) 2869–2877.
  110. Y. Ohko, K.I. Iuchi, C. Niwa, T. Tatsuma, T. Nakashima, T. Iguchi, Y. Kubota, A. Fujishima, 17β-estradiol degradation by TiO2 photocatalysis as a means of reducing estrogenic activity, Environ. Sci. Technol., 36 (2002) 4175–4181.
  111. R. Andreozzi, M. Canterino, R. Marotta, N. Paxeus, Antibiotic removal from wastewaters: the ozonation of amoxicillin, J. Hazard. Mater., 122 (2005) 243–250.
  112. R. Andreozzi, V. Caprio, R. Marotta, D. Vogna, Paracetamol oxidation from aqueous solutions by means of ozonation and H2O2/UV system, Water Res., 37 (2003) 993–1004.
  113. H. Shemer, Y.K. Kunukcu, K.G. Linden, Degradation of the pharmaceutical metronidazole via UV, Fenton and photo- Fenton processes, Chemosphere, 63 (2006) 269–276.
  114. S. Norzaee, E. Bazrafshan, B. Djahed, F.K. Mostafapour, R. Khaksefidi, UV activation of persulfate for removal of penicillin G antibiotics in aqueous solution, Sci. World J., 2017 (2017) 3519487, doi:10.1155/2017/3519487.
  115. A. Almasi, A. Dargahi, M. Mohamadi, H. Biglari, F. Amirian, M. Raei, Removal of penicillin G by combination of sonolysis and photocatalytic (sonophotocatalytic) process from aqueous solution: process optimization using RSM (response surface methodology), Electron. Phys., 8 (2016) 2878–2887.
  116. K.J. Choi, S.G. Kim, S.H. Kim, Removal of antibiotics by coagulation and granular activated carbon filtration, J. Hazard. Mater., 151 (2008) 38–43.