References
- A. Fernández Cirelli, El agua: un recurso esencial, Química
Viva, 11 (2012) 147–170. Available at: https://www.redalyc.org/articulo.oa?id=86325090002
- L. Schweitzer, J. Noblet, Chapter 3.6 – Water Contamination
and Pollution, B. Török, T. Dransfield, Eds., Green Chemistry:
An Inclusive Approach, Elsevier, Boston, MA, USA, 2018, pp.
261–290,
doi:10.1016/B978-0-12-809270-5.00011-X.
- P.H. Gleick, The human right to water, Water Policy, 1 (1998)
487–503.
- L. Sala, M. Serra, Towards sustainability in water recycling,
Water Sci. Technol., 50 (2004) 1–8.
- B. Barraqué, Past and future sustainability of water policies in
Europe, Nat. Resour. Forum, 27 (2003) 200–211.
- M. Gavrilescu, K. Demnerová, J. Aamand, S. Agathos,
F. Fava, Emerging pollutants in the environment: present
and future challenges in biomonitoring, ecological risks and
bioremediation, New Biotechnol., 32 (2014) 147–156.
- C.G. Daughton, Non-regulated water contaminants: emerging
research, Environ. Impact Assess. Rev., 24 (2004) 711–732.
- C. Tejada, E. Quiñonez, M. Peña, Contaminantes Emergentes en
Aguas: metabolitos de Fármacos. Una Revisión, Rev. Fac. Cien.
Básicas, 10 (2014) 80, doi: 10.18359/rfcb.341.
- V. Geissen, Emerging pollutants in the environment: a challenge
for water resource management, Int. Soil Water Conserv. Res.,
3 (2015) 57–65.
- A.R. Clemente, E.L. Chica Arrieta, G.A. Peñuela Mesa, Procesos
de tratamiento de aguas residuales para la eliminación de
contaminantes orgánicos emergentes, Rev. Ambient. Agua,
8 (2013) 93–103.
- X. Liu, X. Guo, Y. Liu, B. Xi, J. Zhang, Z. Wang, B. Bi, A review
on removing antibiotics and antibiotic resistance genes
from wastewater by constructed wetlands: performance
and microbial response, Environ. Pollut., 254 (2019) 112996,
doi: 10.1016/j.envpol.2019.112996.
- J. Zur, J. Michalska, A. Piński, A. Mrozik, A. Nowak, Effects
of low concentration of selected analgesics and successive
bioaugmentation of the activated sludge on its activity and
metabolic diversity, Water (Switzerland), 12 (2020) 1133,
doi: 10.3390/W12041133.
- R.M. Briones, A.K. Sarmah, L.P. Padhye, A global perspective
on the use, occurrence, fate and effects of anti-diabetic drug
metformin in natural and engineered ecosystems, Environ.
Pollut., 219 (2016) 1007–1020.
- P.A. Przybylińska, M. Wyszkowski, Environmental
contamination with phthalates and its impact on living
organisms, Ecol. Chem. Eng. S, 23 (2016) 347–356.
- F. Ferrara, E. Funari, E. de Felip, G. Donati, M.E. Traina,
A. Mantovani, Alkylphenols: assessment of risks for aquatic
ecosystems and for human health with particular reference
to endocrine effects, Ann Ist Super Sanita., 37 (2001) 615–625.
- M. Hossein, O. Chande, F. Ngassapa, M. Eunice, Chapter 4 –
Exposure to 1,4-Dioxane and Disinfection
By-Products Due to the
Reuse of Wastewater, H. Sarma, D.C. Dominguez, W.Y. Lee, Eds.,
Emerging Contaminants in the Environment: Challenges and
Sustainable Practices, Elsevier, El Paso, Texas, USA and Boston,
MA, USA, 2022, pp. 87–109. doi: 10.1016/B978-0-323-85160-2.0000.
- J. Liu, L. Zhang, G. Lu, R. Jiang, Z. Yan, Y. Li, Occurrence,
toxicity and ecological risk of Bisphenol A analogues in aquatic
environment – a review, Ecotoxicol. Environ. Saf., 208 (2021)
111481, doi:10.1016/j.ecoenv.2020.111481.
- M.J. Gil, A.M. Soto, J.I. Usma, O.D. Gutiérrez, Emerging
contaminants in waters: effects and possible treatments, Rev.
P+L, 7 (2012) 52–73.
- WHO, Pharmaceuticals in Drinking-Water, World Health
Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland,
2012. Available at: https://www.who.int/publications/m/item/
information-sheet-pharmaceuticals-in-drinking-water (Accessed
May 8, 2022).
- P.L. Lallas, The Stockholm Convention on Persistent Organic
Pollutants, AJIL, 95 (2001) 692–708, doi:10.2307/2668517.
- D. Leipziger, The Rio Declaration on Environment and
Development, The Corporate Responsibility Code Book, 2017.
Available at: http://dx.doi.org/10.4324/9781351278881-18
- A. Badry, G. Treu, G. Gkotsis, M.C. Nika, N. Alygizakis,
N.S. Thomaidis, C.C. Voigt, O. Krone, Ecological and spatial
variations of legacy and emerging contaminants in whitetailed
sea eagles from Germany: implications for prioritisation
and future risk management, Environ. Int., 158 (2022) 106934,
doi:10.1016/j.envint.2021.106934.
- M. Wu, D. Atchley, S. Janssen, D. Rosenberg, J. Sass,
Dosed without prescription: a framework for preventing
pharmaceutical contamination of our nation’s drinking water,
Environ. Sci. Technol., 45 (2011) 366–367.
- Infac, Farmacontaminación. Impacto ambiental de los
medicamentos, Información farmacoterapéuta de la comarca,
24 (2016) 60–61.
- X.X. Zhang, T. Zhang, H.H.P. Fang, Antibiotic resistance genes
in water environment, Appl. Microbiol. Biotechnol., 82 (2009)
397–414.
- I. Quesada Peñate, H. Delmas, U. Javier Jáuregui Haza,
A.M. Wilhelm, Contaminación de las aguas con productos
farmaceuticos. Estrategias para enfrentar la problemática,
Revista CENIC: Ciencias Biológicas, 40 (2009) 173–179.
- K. Kümmerer, Antibiotics in the aquatic environment – a
review – Part II, Chemosphere, 75 (2009) 435–441.
- J. Gatica, E. Cytryn, Impact of treated wastewater irrigation on
antibiotic resistance in the soil microbiome, Environ. Sci. Pollut.
Res., 20 (2013) 3529–3538.
- R. Vignoli, V. Seija, Principales Mecanismos de Resistencia
antibiótica, Temas de bacteriología y Virología Médica,
Mecanismos de resistencia antibiótica, Instituto de Higiene,
2008, pp. 649–662.
- F. Valery, M. Miranda, A. Espósito, G. Maggi, E. Spadola,
Resistencia a penicilina y cefalosporinas de tercera generación
en cepas de Streptococcus Pneumoniae, Archivos Venezolanos
de Puericultura y Pediatría, 68 (2005) 177–185.
- M.J. Struelens, O. Denis, H. Rodriguez-Villalobos, M. Hallin,
The threat of antibiotic resistance: origin, impact and public
health perspectives, Rev. Med. Brux., 28 (2007) 24–48.
- M. Lobanovska, G. Pilla, Fluctuation-dominated kinetics in
diffusion-controlled reactions, Yale J. Biol. Med., 90 (2017) 135–145.
- G. Dumancas, R. Hikkaduwa, E. Mojica, B. Murdianti,
P. Pham, Penicillins, Encyclopedia of Toxicology,
P. Wexler,
A. Mohammad, A. de Peyster, Eds, Elsevier, US National
Library of Medicine, Bethesda, MD, USA, 2014.
- D. Li, M. Yang, J. Hu, Y. Zhang, H. Chang, F. Jin, Determination
of penicillin G and its degradation products in a penicillin
production wastewater treatment plant and the receiving river,
Water Res., 42 (2008) 307–317.
- H. Gelband, P.M. Miller, P. Suraj, S. Gandra, J. Levinson, D. Barter,
A. White, R. Laxminarayan, State of the World’s Antibiotics
2015, WHSA, 8 (2015) 30–34, doi: 10.10520/EJC180082.
- Y. Doi, H.F. Chambers, Penicillins and β-Lactamase Inhibitors,
J.E. Bennett, R. Dolin, M.J. Blaser, Eds., Mandell,
Douglas, and Bennett’s Principles and Practice of Infectious
Diseases, Elsevier, 2015. Available at: https://doi.org/10.1016/
B978-1-4557-4801-3.00020-5
- E.L. Miller, The penicillins: a review and update, J. Midwifery
Womens Health, 47 (202) 426–434.
- F. Prestinaci, P. Pezzotti, A. Pantosti, Antimicrobial resistance:
a global multifaceted phenomenon, Pathog. Global Health, 109
(2015) 309–318.
- J.I. Alós, Antibiotic resistance: a global crisis, Enferm. Infecc.
Microbiol. Clin., 33 (2015) 692–699.
- Centro Nacional de Información Biotecnológica, Resumen
de compuestos de PubChem para CID 23668834, Penicilina
G Sódica, PubChem Database, 2021. Available at: https://
pubchem.ncbi.nlm.nih.gov/compound/Penicillin-G-sodium
(Accessed Jan. 3, 2021).
- P. Bosch, I. Schifter, La zeolita una piedra que hierve,
D.R.©1988 FONDO DE CULTURA ECONÓMICA, S.A.
DE C.V. México: Fondo de Cultura Económica, Carretera
Picacho-Ajusco 227, 14200 México, D.F, 1998.
- N. Taufiqurrahmi, A.R. Mohamed, S. Bhatia, Nanocrystalline
zeolite Y: synthesis and characterization, IOP Conf. Ser.: Mater.
Sci. Eng., 17 (2011) 012030, doi: 10.1088/1757-899X/17/1/012030.
- E. Johan, T. Yamada, M.W. Munthali, P. Kabwadza-Corner,
H. Aono, N. Matsue, Natural zeolites as potential materials
for decontamination of radioactive cesium, Procedia Environ.
Sci., 28 (2015) 52–56.
- Y. Li, L. Li, J. Yu, Applications of zeolites in sustainable
chemistry, Chem, 3 (2017) 928–949.
- W. Lutz, Zeolite Y: synthesis, modification, and properties –
a case revisited, Adv. Mater. Sci. Eng., 2014 (2014) 20,
doi: 10.1155/2014/724248.
- K. Margeta, N. Zabukovec Logar, M. Siljeg, A. Farkas,
Chapter 5: Natural Zeolites in Water Treatment – How Effective
is Their Use, W. Elshorbagy, R. Kabir Chowdhury, Eds.,
Water Treatment, InTechOpen, 2013, doi:10.5772/50738.
- E.K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, S. Ismadji,
Performance of activated carbon and bentonite for adsorption
of amoxicillin from wastewater: mechanisms, isotherms and
kinetics, Water Res., 43 (2009) 2419–2430.
- N. Genç, E.C. Dogan, Adsorption kinetics of the antibiotic
ciprofloxacin on bentonite, activated carbon, zeolite, and
pumice, Desal. Water Treat., 53 (2015) 785–793.
- T.M.S. Attia, X. Lin Hu, Y.D. Qiang, Synthesized magnetic
nanoparticles coated zeolite for the adsorption of pharmaceutical
compounds from aqueous solution using batch and column
studies, Chemosphere, 93 (2013) 2076–2085.
- A. Martucci, L. Pasti, N. Marchetti, A. Cavazzini, F. Dondi,
A. Alberti, Adsorption of pharmaceuticals from aqueous
solutions on synthetic zeolites, Microporous Mesoporous
Mater., 148 (2012) 174–183.
- M. Liu, L.A. Hou, S. Yu, B. Xi, Y. Zhao, X. Xia, MCM-41
impregnated with A zeolite precursor: synthesis, characterization
and tetracycline antibiotics removal from aqueous
solution, Chem. Eng. J., 223 (2013) 678–687.
- A. Rahimi, B. Bayati, M. Khamforoush, Synthesis and
application of Cu-X zeolite for removal of antibiotic from
aqueous solution: process optimization using response surface
methodology, Arabian J. Sci. Eng., 44 (2019) 5381–5397.
- P. Szabová, M. Plekancová, N. Gróf, I. Bodík, Slovak natural
zeolites as a suitable medium for antibiotics elimination from
wastewater, Acta Chim. Slov., 12 (2019) 163–167.
- M. Fischer, Simulation-based evaluation of zeolite adsorbents
for the removal of emerging contaminants, Adv. Mater.,
1 (2020) 86–98.
- A. Rossner, S.A. Snyder, D.R.U. Knappe, Removal of emerging
contaminants of concern by alternative adsorbents, Water Res.,
43 (2009) 3787–3796.
- Suhartana, E. Sukmasari, C. Azmiyawati, Modification of
natural zeolite with Fe(III) and its application as adsorbent
chloride and carbonate ions, IOP Conf. Ser.: Mater. Sci. Eng.,
349 (2018) 012075, doi:10.1088/1757-899X/349/1/012075.
- H. Nourmoradi, A. Daneshfar, S. Mazloomi, J. Bagheri, S. Barati,
Removal of penicillin G from aqueous solutions by a cationic
surfactant modified montmorillonite, Methods X, 6 (2019)
1967–1973.
- J. Zhang, Z. Xiong, J. Wei, Y. Song, Y. Ren, D. Xu, B. Lai,
Catalytic ozonation of penicillin G using cerium-loaded
natural zeolite (CZ): efficacy, mechanisms, pathways and
toxicity assessment, Chem. Eng. J., 383 (2020) 123144,
doi: 10.1016/j.cej.2019.123144.
- E. Xingu-Contreras, G. García-Rosales, I. García-Sosa,
A. Cabral-Prieto, M. Solache-Ríos, Characterization of natural
zeolite clinoptilolite for sorption of contaminants, Hyperfine
Interact., 232 (2015) 7–18.
- A. Salama, N. Shukry, V. Guarino, Chapter 6 – Polysaccharide-
Based Hybrid Materials for Molecular Release Applications,
V. Guarino, M. Iafisco, S. Sprian, Eds., Nanostructured
Biomaterials for Regenerative Medicine: Woodhead Publishing
Series in Biomaterials, Woodhead Publishing, 2019, pp. 165–201,
doi: 10.1016/B978-0-08-102594-9.00006-1.
- Y.M. Vargas-Rodríguez, V. Gómez-Vidales, E. Vázquez-
Labastida, A. García-Bórquez, G. Aguilar-Sahagún, H. Murrieta-
Sánchez, M. Salmón, Caracterización espectroscópica, química
y morfológica y propiedades superfi ciales de una montmorillonita
mexicana, Rev. Mex. Cienc. Geol., 25 (2008) 135–144.
- C. Zhou, D. Tong, W. Yu, Chapter 7 – Smectite Nanomaterials:
Preparation, Properties, and Functional Applications, A. Wang,
W. Wang, Eds., Nanomaterials from Clay Minerals: A New
Approach to Green Functional Materials Micro and Nano
Technologies, Elsevier Inc., Publishing, China, 2019,
doi: 10.1016/
B978-0-12-814533-3.00007-7.
- I. Arvanitopyannis, I. Eleftheriadis, E. Tsatsaroni, Influence
of pH adsorption of dye-containing effluents with different
bentonites, Chemosphere, 18 (1989) 1707–1711.
- E. Erdem, N. Karapinar, R. Donat, The removal of heavy metal
cations by natural zeolites, J. Colloid Interface Sci., 280 (2004)
309–314.
- Z. Abaei, H. Faghihian, N. Esmaeeli, Preparation and
application of zeolitic adsorbents for removal of fuoride from
aqueous solution; equilibrium, kinetic and thermodynamic
studies, Der Chemica Sinica, 8 (2017) 524–534.
- E. Allahkarami, B. Rezai, Removal of cerium from different
aqueous solutions using different adsorbents:
a review, Process
Saf. Environ. Prot., 124 (2019) 345–362.
- J.S.C. Celina, O.G.M. Teresa, D.N.M. del Carmen, Adsorción de
colorantes azul vegetal y azul acuarela por zeolitas naturales
modificadas con surfactantes, XIX Congreso Técnico Científico
ININ-SUTIN 2009, 2009.
- J. Choi, W.S. Shin, Removal of salicylic and ibuprofen by
hexadecyltrimethylammonium-modified montmorillonite and
zeolite, Minerals, 10 (2020) 1–15.
- L. Guocheng, C.W. Pearce, A. Gleason, L. Liao, M.P. MacWilliams,
Z. Li, Influence of montmorillonite on antimicrobial activity
of tetracycline and ciprofloxacin, J. Asian Earth Sci., 77 (2013)
281–286.
- J.G. Carriazo, M.J. Saavedra, M.F. Molina, Adsorption properties
of an activated carbon and determination of Langmuir’s
equation using low cost materials, Educ. Quím., 21 (2010)
224–229.
- A. Colín Cruz, Obtención de un carbón activado proveniente
de la pirólisis de lodos residuales y su evaluación como
material de sorción, Universidad Autónoma del Estado de
México, 2007.
- C.Y. Yin, M.K. Aroua, W.M.A.W. Daud, Review of modifications
of activated carbon for enhancing contaminant uptakes from
aqueous solutions, Sep. Purif. Technol., 52 (2007) 403–415.
- S. Wong, N. Ngadi, I.M. Inuwa, O. Hassan, Recent advances in
applications of activated carbon from biowaste for wastewater
treatment: a short review, J. Cleaner Prod., 175 (2018) 361–375.
- H. Li, J. Hu, C. Wang, X. Wang, Removal of amoxicillin in
aqueous solution by a novel chicken feather carbon: kinetic
and equilibrium studies, Water Air Soil Pollut., 228 (2017) 201,
doi: 10.1007/s11270-017-3385-6.
- M.J. Ahmed, S.K. Theydan, Microporous activated carbon from
Siris seed pods by microwave-induced KOH activation for
metronidazole adsorption, J. Anal. Appl. Pyrolysis, 99 (2013)
101–109.
- G. Li, D. Zhang, M. Wang, J. Huang, L. Huang, Preparation of
activated carbons from Iris tectorum employing ferric nitrate
as dopant for removal of tetracycline from aqueous solutions,
Ecotoxicol. Environ. Saf., 98 (2013) 273–282.
- L. Huang, M. Wang, C. Shi, J. Huang, B. Zhang, Adsorption of
tetracycline and ciprofloxacin on activated carbon prepared
from lignin with H3PO4 activation, Desal. Water Treat., 52 (2014)
2678–2687.
- H.R. Pouretedal, N. Sadegh, Effective removal of amoxicillin,
cephalexin, tetracycline and penicillin G from aqueous
solutions using activated carbon nanoparticles prepared from
vine wood, J. Water Process Eng., 1 (2014) 64–73.
- L. Huang, C. Shi, B. Zhang, S. Niu, B. Gao, Characterization of
activated carbon fiber by microwave heating and the adsorption
of tetracycline antibiotics, Sep. Sci. Technol. (Philadelphia),
48 (2013) 1356–1363.
- Y. Chen, J. Shi, Q. Du, H. Zhang, Y. Cui, Antibiotic removal
by agricultural waste biochars with different forms of iron
oxide, RSC Adv., 9 (2019) 14143–14153.
- D. Balarak, A.H. Mahvi, S. Shahbaksh, M.A. Wahab, A. Abdala,
Adsorptive removal of azithromycin antibiotic from aqueous
solution by Azolla filiculoides-based activated porous carbon,
Nanomaterials, 11 (2021) 3281, doi: 10.3390/nano11123281.
- Z. Aksu, Ö. Tunç, Application of biosorption for penicillin G
removal: comparison with activated carbon, Process Biochem.,
40 (2005) 831–847.
- C.O. Ania, J.G. Pelayo, T.J. Bandosz, Reactive adsorption of
penicillin on activated carbons, Adsorption, 17 (2011) 421–429.
- J. Luque, G. Elena, J. Armengol, J. Legorburu, Las enfermedades
de la madera de la vid: reflexiones sobre un panorama complejo,
Vid Transferencia tecnológica, 260 (2014) 18–22.
- P. Singh, V.K. Singh, R. Singh, A. Borthakur, S. Madhav,
A. Ahamad, A. Kumar, D.B. Pal, D. Tiwary, P.K. Mishra, Chapter
1 – Bioremediation: A Sustainable Approach for Management of
Environmental Contaminants,
P. Singh, A. Kumar, A. Borthakur,
Eds., Abatement of Environmental Pollutants: Trends and
Strategies, Elsevier Inc. Publishing, 2020, pp. 1–23. doi: 10.1016/B978-0-12-818095-2.00001-1.
- J.C. Silva, L. Morante, C.J. Moreno, N.A. Cuizano, A.E. Navarro,
B.P. Llanos, Enhancement of the adsorptive properties of
biomaterials by chemical modification for the elimination
of antibiotics, Rev. Soc. Quím. Perú, 84 (2018) 183–196.
- M. Rathod, S. Haldar, S. Basha, Nanocrystalline cellulose
for removal of tetracycline hydrochloride from water via
biosorption: equilibrium, kinetic and thermodynamic studies,
Ecol. Eng., 84 (2015) 240–249.
- X. Yang, H. Wei, C. Zhu, B. Geng, Biodegradation of atrazine
by the novel Citricoccus sp. strain TT3, Ecotoxicol. Environ.
Saf., 147 (2018) 144–150.
- L. Pan, J. Li, C. Li, X. Tang, G. Yu, Y. Wang, Study of
ciprofloxacin biodegradation by a Thermus sp. isolated from
pharmaceutical sludge, J. Hazard. Mater., 343 (2018) 59–67.
- J.Q. Xiong, M.B. Kurade, B.H. Jeon, Biodegradation of
levofloxacin by an acclimated freshwater microalga, Chlorella
vulgaris, Chem. Eng. J., 313 (2017) 1251–1257.
- P. Wang, C. Shen, X. Wang, S. Liu, L. Li, J. Guo, Biodegradation
of penicillin G from industrial bacteria residue by immobilized
cells of Paracoccus sp. KDSPL-02 through continuous
expanded bed adsorption bioreactor, J. Biol. Eng., 14 (2020),
doi: 10.1186/s13036-020-0229-5.
- P. Wang, H. Liu, H. Fu, X. Cheng, B. Wang, Q. Cheng, J. Zhang
P. Zou, Characterization and mechanism analysis of penicillin
G biodegradation with Klebsiella pneumoniae Z1 isolated
from waste penicillin bacterial residue, J. Ind. Eng. Chem.,
27 (2015) 50–58.
- P. Mullai, S. Arulselvi, H.H. Ngo, P.L. Sabarathinam,
Experiments and ANFIS modelling for the biodegradation
of penicillin-G wastewater using anaerobic hybrid reactor,
Bioresour. Technol., 102 (2011) 5492–5497.
- A. Al-Ahmad, F.D. Daschner, K. Kümmerer, Biodegradability
of cefotiam, ciprofloxacin, meropenem, penicillin G, and
sulfamethoxazole and inhibition of waste water bacteria,
Arch. Environ. Contam. Toxicol., 37 (1999) 158–163.
- E.U. Cokgor, O. Karahan, I. Arslan-Alaton, S. Meric,
H. Saruhan, D. Orhon, Effect of perozonation on biodegradability
and toxicity of a penicillin formulation effluent,
J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ.
Eng., 41 (2006) 1887–1897.
- S. Hammarstrom, J.L. Strominger, Degradation of penicillin G
to phenylacetylglycine by D-alanine carboxypeptidase from
Bacillus stearothermophilus (gas–liquid chromatography/mass
spectrometry/infrared spectroscopy), Proc. Natl. Acad. Sci.
U.S.A., 72 (1975) 3463–3467, doi: 10.1073/pnas.72.9.3463.
- D. Balarak, F. Mostafapour, A. Joghataei, Experimental and
kinetic studies on penicillin G adsorption by Lemna minor,
Br. J. Pharm. Res., 9 (2016) 1–10, doi: 10.9734/bjpr/2016/22820.
- M. Kumar, S. Jaiswal, K.K. Sodhi, P. Shree, D.K. Singh,
P.K. Agrawal, P. Shukla, Antibiotics bioremediation:
perspectives
on its ecotoxicity and resistance, Environ. Int.,
124 (2019) 448–461.
- P. Gharbani, A. Mehrizad, I. Jafarpour, Adsorption of
penicillin by decaffeinated tea waste, Pol. J. Chem. Technol.,
17 (2015) 95–99.
- S. Chavoshan, M. Khodadadi, N. Nasseh, A.H. Panahi,
A. Hosseinnejad, Investigating the efficiency of single-walled
and multi-walled carbon nanotubes in removal of penicillin
G from aqueous solutions, Environ. Health Eng. Manage.,
5 (2018) 187–196.
- F. Masoudi, M. Kamranifar, A. Naghizadeh, The efficiency of
chitosan extracted from Persian gulf shrimp shell in removal
of penicillin G antibiotic from aqueous environment, Iran. J.
Chem. Chem. Eng, 29 (2020) 235–244.
- M. Akbulut, Selective removal of penicillin G from
environmental water samples by using molecularly imprinted
membranes, Hittite J. Sci. Eng., 7 (2020) 329–337.
- I. Aranaz, A.R. Alcántara, M.C. Civera, C. Arias, B. Elorza,
A. Heras Caballero, N. Acosta, Chitosan: an overview of its
properties and applications, Polymers (Basel), 13 (2021) 3256,
doi: 10.3390/polym13193256.
- N. Anzar, R. Hasan, M. Tyagi, N. Yadav, J. Narang, Carbon
nanotube – a review on synthesis, properties and plethora of
applications in the field of biomedical science, Sensors Int.,
1 (2020) 100003, doi:10.1016/j.sintl.2020.100003.
- S. Mustapha, M.M. Ndamitso, A.S. Abdulkareem, J.O. Tijani,
A.K. Mohammed, D.T. Shuaib, Potential of using kaolin
as a natural adsorbent for the removal of pollutants from
tannery wastewater, Heliyon, 5 (2019) 02923, doi: 10.1016/j.
heliyon.2019.e02923.
- J.L. Wang, L.J. Xu, Advanced oxidation processes for
wastewater treatment: formation of hydroxyl radical and
application, Crit. Rev. Env. Sci. Technol., 42 (2012) 251–325.
- J.E. Forero, O.P. Ortiz, F. Rios, Advanced oxidation processes
as phenol treatment in industrial sewage,
CT&F – Ciencia,
Tecnología y Futuro, 3 (2005) 97–109.
- S. Moles, R. Mosteo, J. Gómez, J. Szpunar, S. Gozzo,
J.R. Castillo, M.P. Ormad, Towards the removal of antibiotics
detected in wastewaters in the POCTEFA territory: occurrence
and TiO2 photocatalytic pilot-scale plant performance,
Water, 12 (2020) 1453, doi: 10.3390/w12051453.
- R. Andreozzi, R. Marotta, G. Pinto, A. Pollio, Carbamazepine
in water: persistence in the environment, ozonation treatment
and preliminary assessment on algal toxicity, Water Res.,
36 (2002) 2869–2877.
- Y. Ohko, K.I. Iuchi, C. Niwa, T. Tatsuma, T. Nakashima,
T. Iguchi, Y. Kubota, A. Fujishima, 17β-estradiol degradation
by TiO2 photocatalysis as a means of reducing estrogenic
activity, Environ. Sci. Technol., 36 (2002) 4175–4181.
- R. Andreozzi, M. Canterino, R. Marotta, N. Paxeus, Antibiotic
removal from wastewaters: the ozonation of amoxicillin,
J. Hazard. Mater., 122 (2005) 243–250.
- R. Andreozzi, V. Caprio, R. Marotta, D. Vogna, Paracetamol
oxidation from aqueous solutions by means of ozonation
and H2O2/UV system, Water Res., 37 (2003) 993–1004.
- H. Shemer, Y.K. Kunukcu, K.G. Linden, Degradation of the
pharmaceutical metronidazole via UV, Fenton and photo-
Fenton processes, Chemosphere, 63 (2006) 269–276.
- S. Norzaee, E. Bazrafshan, B. Djahed, F.K. Mostafapour,
R. Khaksefidi, UV activation of persulfate for removal of
penicillin G antibiotics in aqueous solution, Sci. World J.,
2017 (2017) 3519487, doi:10.1155/2017/3519487.
- A. Almasi, A. Dargahi, M. Mohamadi, H. Biglari, F. Amirian,
M. Raei, Removal of penicillin G by combination of sonolysis
and photocatalytic (sonophotocatalytic) process from aqueous
solution: process optimization using RSM (response surface
methodology), Electron. Phys., 8 (2016) 2878–2887.
- K.J. Choi, S.G. Kim, S.H. Kim, Removal of antibiotics
by coagulation and granular activated carbon filtration,
J. Hazard. Mater., 151 (2008) 38–43.