References
- H. Sirén, S. El Fellah, Steroids contents in waters of wastewater
purification plants: determination with partial-filling micellar
electrokinetic capillary chromatography and UV detection,
Int. J. Environ. Anal. Chem., 96 (2016) 1003–1021.
- A. Roudbari, M. Rezakazemi, Hormones removal from
municipal wastewater using ultrasound, AMB Express.,
8 (2018) 91, doi: 10.1186/s13568-018-0621-4.
- N.A. Al-Odaini, M.P. Zakaria, M.I. Yaziz, S. Surif, N. Kannan,
Occurrence of synthetic hormones in sewage effluents and
Langat River and its tributaries, Malaysia, Int. J. Environ. Anal.
Chem., 93 (2013) 1457–1469.
- S. Wang, W. Huang, G. Fang, Y. Zhang, H. Qiao, Analysis
of steroidal estrogen residues in food and environmental
samples, Int. J. Environ. Anal. Chem., 88 (2008) 1–25.
- R.G. Maliva, T.M. Missimer, F.P. Winslow, R. Herrmann,
Aquifer storage and recovery of treated sewage effluent in the
Middle East, Arabian J. Sci. Eng., 36 (2011) 63–74.
- B.G. Plósz, H. Leknes, H. Liltved, K.V. Thomas, Diurnal
variations in the occurrence and the fate of hormones and
antibiotics in activated sludge wastewater treatment in
Oslo, Norway, Sci. Total Environ., 408 (2010) 1915–1924.
- K. Sornalingam, A. McDonagh, J.L. Zhou, Photodegradation of
estrogenic endocrine disrupting steroidal hormones in aqueous
systems: progress and future challenges, Sci. Total Environ.,
550 (2016) 209–224.
- X. Li, W. Zheng, W.R. Kelly, Occurrence and removal of
pharmaceutical and hormone contaminants in rural wastewater
treatment lagoons, Sci. Total Environ., 445–446 (2013) 22–28.
- H. Li, J. Ni, Treatment of wastewater from Dioscorea zingiberensis
tubers used for producing steroid hormones in a microbial fuel
cell, Bioresour. Technol., 102 (2011) 2731–2735.
- R. Foroutan, H. Esmaeili, M. Abbasi, M. Rezakazemi, M. Mesbah,
Adsorption behavior of Cu(II) and Co(II) using chemically
modified marine algae, Environ. Technol., 39 (2018) 2792–2800.
- A.O. Ifelebuegu, J. Ukpebor, B. Nzeribe-Nwedo, Mechanistic
evaluation and reaction pathway of UV
photo-assisted Fentonlike
degradation of progesterone in water and wastewater,
Int. J. Environ. Sci. Technol., 13 (2016) 2757–2766.
- W. Liu, G. Guo, F. Chen, Y. Chen, Meteorological pattern
analysis assisted daily PM2.5 grades prediction using SVM
optimized by PSO algorithm, Atmos. Pollut. Res., 10 (2019)
1482–1491.
- Y. Ding, W. Zhang, L. Yu, K. Lu, The accuracy and efficiency
of GA and PSO optimization schemes on estimating reaction
kinetic parameters of biomass pyrolysis, Energy, 176 (2019)
582–588.
- B. Albero, C. Sánchez-Brunete, A.I. García-Valcárcel,
R.A. Pérez, J.L. Tadeo, Ultrasound-assisted extraction of
emerging contaminants from environmental samples, TrAC,
Trends Anal. Chem., 71 (2015) 110–118.
- V. Naddeo, M.F.N. Secondes, L. Borea, S.W. Hasan, F. Ballesteros
Jr., V. Belgiornoa, Removal of contaminants of emerging
concern from real wastewater by an innovative hybrid
membrane process – ultrasound, adsorption, and membrane
ultrafiltration (USAMe®), Ultrason. Sonochem., 68 (2020)
105237, doi:10.1016/j.ultsonch.2020.105237.
- T. Benabdallah El-Hadj, J. Dosta, R. Márquez-Serrano, J. Mata-Alvarez, Effect of ultrasound pretreatment in mesophilic
and thermophilic anaerobic digestion with emphasis on
naphthalene and pyrene removal, Water Res., 41 (2007) 87–94.
- H. Ilyas, E.D. van Hullebusch, A review on the occurrence,
fate and removal of steroidal hormones during treatment with
different types of constructed wetlands, J. Environ. Chem. Eng.,
8 (2020) 103793, doi:10.1016/j.jece.2020.103793.
- V. Belgiorno, L. Rizzo, D. Fatta, C.D. Rocca, G. Lofrano,
A. Nikolaou, V. Naddeo, S. Meric, Review on endocrine
disrupting-emerging compounds in urban wastewater:
occurrence and removal by photocatalysis and ultrasonic
irradiation for wastewater reuse, Desalination, 215 (2007)
166–176.
- R.P.S. Suri, M. Nayak, U. Devaiah, E. Helmig, Ultrasound
assisted destruction of estrogen hormones in aqueous
solution: effect of power density, power intensity and reactor
configuration, J. Hazard. Mater., 146 (2007) 472–478.
- H. Fu, R.P.S. Suri, R.F. Chimchirian, E. Helmig, R. Constable,
Ultrasound-induced destruction of low levels of estrogen
hormones in aqueous solutions, Environ. Sci. Technol., 41 (2007)
5869–5874.
- V. Naddeo, S. Meriç, D. Kassinos, V. Belgiorno, M. Guida,
Fate of pharmaceuticals in contaminated urban wastewater
effluent under ultrasonic irradiation, Water Res., 43 (2009)
4019–4027.
- C.P. Silva, M. Otero, V. Esteves, Processes for the elimination
of estrogenic steroid hormones from water: a review, Environ.
Pollut., 165 (2012) 38–58.
- U. Kotowska, J. Kapelewska, J. Sturgulewska, Determination of
phenols and pharmaceuticals in municipal wastewaters from
Polish treatment plants by ultrasound-assisted emulsification–microextraction followed by GC–MS, Environ. Sci. Pollut. Res.,
21 (2014) 660–673.
- N. Tran, P. Drogui, S.K. Brar, Sonochemical techniques to
degrade pharmaceutical organic pollutants, Environ. Chem.
Lett., 13 (2015) 251–268.
- J. Kapelewska, U. Kotowska, K. Wiśniewska, Determination
of personal care products and hormones in leachate and
groundwater from Polish MSW landfills by ultrasound-assisted
emulsification microextraction and GC-MS, Environ. Sci. Pollut.
Res. Int., 23 (2016) 1642–1652.
- M.P. Rayaroth, U.K. Aravind, C.T. Aravindakumar, Degradation
of pharmaceuticals by ultrasound-based advanced
oxidation process, Environ. Chem. Lett., 14 (2016) 259–290.
- A.A. Roudbari, Production of hydroxyl free radical, the main
mechanism for removing steroid hormones by ultrasound, Int.
J. Health Stud., 2 (2016) 1–5.
- K.H. Chu, Y.A.J. Al-Hamadani, C.M. Park, G. Lee, M. Jang,
A. Jang, N. Her, A. Son, Y. Yoon, Ultrasonic treatment of
endocrine disrupting compounds, pharmaceuticals, and
personal care products in water: a review, Chem. Eng. J.,
327 (2017) 629–647.
- G. Lee, J. Bae, S. Lee, M. Jang, H. Park, Monthly chlorophyll-a
prediction using neuro-genetic algorithm for water quality
management in Lakes, Desal. Water Treat., 57 (2016)
26783–26791.
- K. Anupam, S. Dutta, C. Bhattacharjee, S. Datta, Artificial
neural network modelling for removal of chromium(VI) from
wastewater using physisorption onto powdered activated
carbon, Desal. Water Treat., 57 (2016) 3632–3641.
- S. Marina, J. Hazard. Mater., (2018).
- J. García-alba, J.F. Bárcena, C. Ugarteburu, A. García, Water
Res., (2018).
- M. Shirani, A. Akbari, M. Hassani, A. Goli, S. Habibollahi,
P. Akbarian, Homogeneous liquid-liquid microextraction via
flotation assistance coupled with gas chromatography-mass
spectrometry for determination of myclobutanil in cucumber,
tomato, grape, and strawberry using genetic algorithm, Int. J.
Environ. Anal. Chem., 98 (2018) 271–285.
- V.D. Nguyen, H.T.H. Nguyen, V. Vranova, L.T.N. Nguyen,
Q.M. Bui, T.T. Khieu, Artificial neural network modeling for
Congo red adsorption on microwave-synthesized akaganeite
nanoparticles: optimization, kinetics, mechanism, and
thermodynamics, Environ. Sci. Pollut. Res. Int., 28 (2021)
9133–9145.
- R.M. Adnan, O. Kisi, Transfer learning for neural network
model in chlorophyll-a dynamics prediction by Wenchong
Tian, Zhenliang Liao, and Xuan Wang, Environ. Sci. Pollut.
Res., 27 (2020) 30899–30900.
- M.R. Gadekar, M. Mansoor Ahammed, Modelling dye removal
by adsorption onto water treatment residuals using combined
response surface methodology-artificial neural network
approach, J. Environ. Manage., 231 (2019) 241–248.
- L. Jin, X. Kuang, H. Huang, Z. Qin, Y. Wang, Study on the
overfitting of the artificial neural network forecasting model,
Acta Meteorol. Sin., 19 (2004) 216–225.
- E. Rahnama, O. Bazrafshan, G. Asadollahfardi, Application
of data-driven methods to predict the sodium adsorption rate
(SAR) in different climates in Iran, Arabian J. Geosci., 13 (2020)
1160,
doi: 10.1007/s12517-020-06146-4.
- S. Homayoun Aria, A. Gholamreza, N. Heidarzadeh,
Eutrophication modelling of Amirkabir Reservoir (Iran) using
an artificial neural network approach, Lakes and Reservoirs:
Science, Policy and Management for Sustainable Use, 24 (2019)
48–58.
- M. Fan, J. Hu, R. Cao, W. Ruan, X. Wei, A review on experimental
design for pollutants removal in water treatment with the
aid of artificial intelligence, Chemosphere, 200 (2018) 330–343.
- X. Leng, J. Wang, H. Ji, Q. Wang, H. Li, X. Qian, F. Li, M. Yang,
Prediction of size-fractionated airborne particle-bound metals
using MLR, BP-ANN and SVM analyses, Chemosphere,
180 (2017) 513–522.
- M.V. Prabhu, R. Karthikeyan, Comparative studies on modelling
and optimization of hydrodynamic parameters on inverse
fluidized bed reactor using ANN-GA and RSM, Alexandria
Eng. J., 57 (2018) 3019–3032.
- M. Rahgoshay, S. Feiznia, M. Arian, S. Ali, A. Hashemi,
Modeling daily suspended sediment load using improved
support vector machine model and genetic algorithm, Environ.
Sci. Pollut. Res., 25 (2018) 35693–35706.
- C. Sutherland, A. Marcano, B. Chittoo, Artificial Neural
Network-Genetic Algorithm Prediction of Heavy Metal
Removal Using a Novel Plant-Based Biosorbent Banana Floret:
Kinetic, Equilibrium, Thermodynamics and Desorption Studies,
M. Eyvaz, E. Yüksel, Eds., Desalination and Water Treatment,
InTechOpen, 2018.
- M. Moradnia, M. Noorisepehr, M. Salari, M. Darvishmotevalli,
Optimization of 2-chlorophenol removal using ultrasound/
persulfate: prediction by RSM method, biodegradability
improvement of petrochemical refinery wastewater, Arabian
J. Sci. Eng., 47 (2022) 6931–6939.
- G. Asadollahfardi, A. Taklify, A. Ghanbari, Application of
artificial neural network to predict TDS in Talkheh Rud River,
J. Irrig. Drain. Eng., 138 (2012) 363–370.
- M. Bahrami, M. Akbari, S.A. Bagherzadeh, A. Karimipour,
M. Afrand, M. Goodarzi, Develop 24 dissimilar ANNs by
suitable architectures and training algorithms via sensitivity
analysis to better statistical presentation: measure MSEs
between targets and ANN for Fe–CuO/Eg–Water nanofluid,
Physica A, 519 (2018) 159–168.
- R. Soleimani, N.A. Shoushtari, B. Mirza, A. Salahi, Experimental
investigation, modeling and optimization of membrane
separation using artificial neural network and multi-objective
optimization using genetic algorithm, Chem. Eng. Res. Des.,
91 (2013) 883–903.