References

  1. H. Sirén, S. El Fellah, Steroids contents in waters of wastewater purification plants: determination with partial-filling micellar electrokinetic capillary chromatography and UV detection, Int. J. Environ. Anal. Chem., 96 (2016) 1003–1021.
  2. A. Roudbari, M. Rezakazemi, Hormones removal from municipal wastewater using ultrasound, AMB Express., 8 (2018) 91, doi: 10.1186/s13568-018-0621-4.
  3. N.A. Al-Odaini, M.P. Zakaria, M.I. Yaziz, S. Surif, N. Kannan, Occurrence of synthetic hormones in sewage effluents and Langat River and its tributaries, Malaysia, Int. J. Environ. Anal. Chem., 93 (2013) 1457–1469.
  4. S. Wang, W. Huang, G. Fang, Y. Zhang, H. Qiao, Analysis of steroidal estrogen residues in food and environmental samples, Int. J. Environ. Anal. Chem., 88 (2008) 1–25.
  5. R.G. Maliva, T.M. Missimer, F.P. Winslow, R. Herrmann, Aquifer storage and recovery of treated sewage effluent in the Middle East, Arabian J. Sci. Eng., 36 (2011) 63–74.
  6. B.G. Plósz, H. Leknes, H. Liltved, K.V. Thomas, Diurnal variations in the occurrence and the fate of hormones and antibiotics in activated sludge wastewater treatment in Oslo, Norway, Sci. Total Environ., 408 (2010) 1915–1924.
  7. K. Sornalingam, A. McDonagh, J.L. Zhou, Photodegradation of estrogenic endocrine disrupting steroidal hormones in aqueous systems: progress and future challenges, Sci. Total Environ., 550 (2016) 209–224.
  8. X. Li, W. Zheng, W.R. Kelly, Occurrence and removal of pharmaceutical and hormone contaminants in rural wastewater treatment lagoons, Sci. Total Environ., 445–446 (2013) 22–28.
  9. H. Li, J. Ni, Treatment of wastewater from Dioscorea zingiberensis tubers used for producing steroid hormones in a microbial fuel cell, Bioresour. Technol., 102 (2011) 2731–2735.
  10. R. Foroutan, H. Esmaeili, M. Abbasi, M. Rezakazemi, M. Mesbah, Adsorption behavior of Cu(II) and Co(II) using chemically modified marine algae, Environ. Technol., 39 (2018) 2792–2800.
  11. A.O. Ifelebuegu, J. Ukpebor, B. Nzeribe-Nwedo, Mechanistic evaluation and reaction pathway of UV
    photo-assisted Fentonlike degradation of progesterone in water and wastewater, Int. J. Environ. Sci. Technol., 13 (2016) 2757–2766.
  12. W. Liu, G. Guo, F. Chen, Y. Chen, Meteorological pattern analysis assisted daily PM2.5 grades prediction using SVM optimized by PSO algorithm, Atmos. Pollut. Res., 10 (2019) 1482–1491.
  13. Y. Ding, W. Zhang, L. Yu, K. Lu, The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis, Energy, 176 (2019) 582–588.
  14. B. Albero, C. Sánchez-Brunete, A.I. García-Valcárcel, R.A. Pérez, J.L. Tadeo, Ultrasound-assisted extraction of emerging contaminants from environmental samples, TrAC, Trends Anal. Chem., 71 (2015) 110–118.
  15. V. Naddeo, M.F.N. Secondes, L. Borea, S.W. Hasan, F. Ballesteros Jr., V. Belgiornoa, Removal of contaminants of emerging concern from real wastewater by an innovative hybrid membrane process – ultrasound, adsorption, and membrane ultrafiltration (USAMe®), Ultrason. Sonochem., 68 (2020) 105237, doi:10.1016/j.ultsonch.2020.105237.
  16. T. Benabdallah El-Hadj, J. Dosta, R. Márquez-Serrano, J. Mata-Alvarez, Effect of ultrasound pretreatment in mesophilic and thermophilic anaerobic digestion with emphasis on naphthalene and pyrene removal, Water Res., 41 (2007) 87–94.
  17. H. Ilyas, E.D. van Hullebusch, A review on the occurrence, fate and removal of steroidal hormones during treatment with different types of constructed wetlands, J. Environ. Chem. Eng., 8 (2020) 103793, doi:10.1016/j.jece.2020.103793.
  18. V. Belgiorno, L. Rizzo, D. Fatta, C.D. Rocca, G. Lofrano, A. Nikolaou, V. Naddeo, S. Meric, Review on endocrine disrupting-emerging compounds in urban wastewater: occurrence and removal by photocatalysis and ultrasonic irradiation for wastewater reuse, Desalination, 215 (2007) 166–176.
  19. R.P.S. Suri, M. Nayak, U. Devaiah, E. Helmig, Ultrasound assisted destruction of estrogen hormones in aqueous solution: effect of power density, power intensity and reactor configuration, J. Hazard. Mater., 146 (2007) 472–478.
  20. H. Fu, R.P.S. Suri, R.F. Chimchirian, E. Helmig, R. Constable, Ultrasound-induced destruction of low levels of estrogen hormones in aqueous solutions, Environ. Sci. Technol., 41 (2007) 5869–5874.
  21. V. Naddeo, S. Meriç, D. Kassinos, V. Belgiorno, M. Guida, Fate of pharmaceuticals in contaminated urban wastewater effluent under ultrasonic irradiation, Water Res., 43 (2009) 4019–4027.
  22. C.P. Silva, M. Otero, V. Esteves, Processes for the elimination of estrogenic steroid hormones from water: a review, Environ. Pollut., 165 (2012) 38–58.
  23. U. Kotowska, J. Kapelewska, J. Sturgulewska, Determination of phenols and pharmaceuticals in municipal wastewaters from Polish treatment plants by ultrasound-assisted emulsification–microextraction followed by GC–MS, Environ. Sci. Pollut. Res., 21 (2014) 660–673.
  24. N. Tran, P. Drogui, S.K. Brar, Sonochemical techniques to degrade pharmaceutical organic pollutants, Environ. Chem. Lett., 13 (2015) 251–268.
  25. J. Kapelewska, U. Kotowska, K. Wiśniewska, Determination of personal care products and hormones in leachate and groundwater from Polish MSW landfills by ultrasound-assisted emulsification microextraction and GC-MS, Environ. Sci. Pollut. Res. Int., 23 (2016) 1642–1652.
  26. M.P. Rayaroth, U.K. Aravind, C.T. Aravindakumar, Degradation of pharmaceuticals by ultrasound-based advanced oxidation process, Environ. Chem. Lett., 14 (2016) 259–290.
  27. A.A. Roudbari, Production of hydroxyl free radical, the main mechanism for removing steroid hormones by ultrasound, Int. J. Health Stud., 2 (2016) 1–5.
  28. K.H. Chu, Y.A.J. Al-Hamadani, C.M. Park, G. Lee, M. Jang, A. Jang, N. Her, A. Son, Y. Yoon, Ultrasonic treatment of endocrine disrupting compounds, pharmaceuticals, and personal care products in water: a review, Chem. Eng. J., 327 (2017) 629–647.
  29. G. Lee, J. Bae, S. Lee, M. Jang, H. Park, Monthly chlorophyll-a prediction using neuro-genetic algorithm for water quality management in Lakes, Desal. Water Treat., 57 (2016) 26783–26791.
  30. K. Anupam, S. Dutta, C. Bhattacharjee, S. Datta, Artificial neural network modelling for removal of chromium(VI) from wastewater using physisorption onto powdered activated carbon, Desal. Water Treat., 57 (2016) 3632–3641.
  31. S. Marina, J. Hazard. Mater., (2018).
  32. J. García-alba, J.F. Bárcena, C. Ugarteburu, A. García, Water Res., (2018).
  33. M. Shirani, A. Akbari, M. Hassani, A. Goli, S. Habibollahi, P. Akbarian, Homogeneous liquid-liquid microextraction via flotation assistance coupled with gas chromatography-mass spectrometry for determination of myclobutanil in cucumber, tomato, grape, and strawberry using genetic algorithm, Int. J. Environ. Anal. Chem., 98 (2018) 271–285.
  34. V.D. Nguyen, H.T.H. Nguyen, V. Vranova, L.T.N. Nguyen, Q.M. Bui, T.T. Khieu, Artificial neural network modeling for Congo red adsorption on microwave-synthesized akaganeite nanoparticles: optimization, kinetics, mechanism, and thermodynamics, Environ. Sci. Pollut. Res. Int., 28 (2021) 9133–9145.
  35. R.M. Adnan, O. Kisi, Transfer learning for neural network model in chlorophyll-a dynamics prediction by Wenchong Tian, Zhenliang Liao, and Xuan Wang, Environ. Sci. Pollut. Res., 27 (2020) 30899–30900.
  36. M.R. Gadekar, M. Mansoor Ahammed, Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach, J. Environ. Manage., 231 (2019) 241–248.
  37. L. Jin, X. Kuang, H. Huang, Z. Qin, Y. Wang, Study on the overfitting of the artificial neural network forecasting model, Acta Meteorol. Sin., 19 (2004) 216–225.
  38. E. Rahnama, O. Bazrafshan, G. Asadollahfardi, Application of data-driven methods to predict the sodium adsorption rate (SAR) in different climates in Iran, Arabian J. Geosci., 13 (2020) 1160,
    doi: 10.1007/s12517-020-06146-4.
  39. S. Homayoun Aria, A. Gholamreza, N. Heidarzadeh, Eutrophication modelling of Amirkabir Reservoir (Iran) using an artificial neural network approach, Lakes and Reservoirs: Science, Policy and Management for Sustainable Use, 24 (2019) 48–58.
  40. M. Fan, J. Hu, R. Cao, W. Ruan, X. Wei, A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence, Chemosphere, 200 (2018) 330–343.
  41. X. Leng, J. Wang, H. Ji, Q. Wang, H. Li, X. Qian, F. Li, M. Yang, Prediction of size-fractionated airborne particle-bound metals using MLR, BP-ANN and SVM analyses, Chemosphere, 180 (2017) 513–522.
  42. M.V. Prabhu, R. Karthikeyan, Comparative studies on modelling and optimization of hydrodynamic parameters on inverse fluidized bed reactor using ANN-GA and RSM, Alexandria Eng. J., 57 (2018) 3019–3032.
  43. M. Rahgoshay, S. Feiznia, M. Arian, S. Ali, A. Hashemi, Modeling daily suspended sediment load using improved support vector machine model and genetic algorithm, Environ. Sci. Pollut. Res., 25 (2018) 35693–35706.
  44. C. Sutherland, A. Marcano, B. Chittoo, Artificial Neural Network-Genetic Algorithm Prediction of Heavy Metal Removal Using a Novel Plant-Based Biosorbent Banana Floret: Kinetic, Equilibrium, Thermodynamics and Desorption Studies, M. Eyvaz, E. Yüksel, Eds., Desalination and Water Treatment, InTechOpen, 2018.
  45. M. Moradnia, M. Noorisepehr, M. Salari, M. Darvishmotevalli, Optimization of 2-chlorophenol removal using ultrasound/ persulfate: prediction by RSM method, biodegradability improvement of petrochemical refinery wastewater, Arabian J. Sci. Eng., 47 (2022) 6931–6939.
  46. G. Asadollahfardi, A. Taklify, A. Ghanbari, Application of artificial neural network to predict TDS in Talkheh Rud River, J. Irrig. Drain. Eng., 138 (2012) 363–370.
  47. M. Bahrami, M. Akbari, S.A. Bagherzadeh, A. Karimipour, M. Afrand, M. Goodarzi, Develop 24 dissimilar ANNs by suitable architectures and training algorithms via sensitivity analysis to better statistical presentation: measure MSEs between targets and ANN for Fe–CuO/Eg–Water nanofluid, Physica A, 519 (2018) 159–168.
  48. R. Soleimani, N.A. Shoushtari, B. Mirza, A. Salahi, Experimental investigation, modeling and optimization of membrane separation using artificial neural network and multi-objective optimization using genetic algorithm, Chem. Eng. Res. Des., 91 (2013) 883–903.