References
  -  H. Sirén, S. El Fellah, Steroids contents in waters of wastewater
    purification plants: determination with partial-filling micellar
    electrokinetic capillary chromatography and UV detection,
    Int. J. Environ. Anal. Chem., 96 (2016) 1003–1021. 
-  A. Roudbari, M. Rezakazemi, Hormones removal from
    municipal wastewater using ultrasound, AMB Express.,
    8 (2018) 91, doi: 10.1186/s13568-018-0621-4. 
-  N.A. Al-Odaini, M.P. Zakaria, M.I. Yaziz, S. Surif, N. Kannan,
    Occurrence of synthetic hormones in sewage effluents and
    Langat River and its tributaries, Malaysia, Int. J. Environ. Anal.
    Chem., 93 (2013) 1457–1469. 
-  S. Wang, W. Huang, G. Fang, Y. Zhang, H. Qiao, Analysis
    of steroidal estrogen residues in food and environmental
    samples, Int. J. Environ. Anal. Chem., 88 (2008) 1–25. 
-  R.G. Maliva, T.M. Missimer, F.P. Winslow, R. Herrmann,
    Aquifer storage and recovery of treated sewage effluent in the
    Middle East, Arabian J. Sci. Eng., 36 (2011) 63–74. 
-  B.G. Plósz, H. Leknes, H. Liltved, K.V. Thomas, Diurnal
    variations in the occurrence and the fate of hormones and
    antibiotics in activated sludge wastewater treatment in
    Oslo, Norway, Sci. Total Environ., 408 (2010) 1915–1924. 
-  K. Sornalingam, A. McDonagh, J.L. Zhou, Photodegradation of
    estrogenic endocrine disrupting steroidal hormones in aqueous
    systems: progress and future challenges, Sci. Total Environ.,
    550 (2016) 209–224. 
-  X. Li, W. Zheng, W.R. Kelly, Occurrence and removal of
    pharmaceutical and hormone contaminants in rural wastewater
    treatment lagoons, Sci. Total Environ., 445–446 (2013) 22–28. 
-  H. Li, J. Ni, Treatment of wastewater from Dioscorea zingiberensis
    tubers used for producing steroid hormones in a microbial fuel
    cell, Bioresour. Technol., 102 (2011) 2731–2735. 
-  R. Foroutan, H. Esmaeili, M. Abbasi, M. Rezakazemi, M. Mesbah,
    Adsorption behavior of Cu(II) and Co(II) using chemically
    modified marine algae, Environ. Technol., 39 (2018) 2792–2800. 
-  A.O. Ifelebuegu, J. Ukpebor, B. Nzeribe-Nwedo, Mechanistic
    evaluation and reaction pathway of UV 
 photo-assisted Fentonlike
    degradation of progesterone in water and wastewater,
    Int. J. Environ. Sci. Technol., 13 (2016) 2757–2766.
-  W. Liu, G. Guo, F. Chen, Y. Chen, Meteorological pattern
    analysis assisted daily PM2.5 grades prediction using SVM
    optimized by PSO algorithm, Atmos. Pollut. Res., 10 (2019)
    1482–1491. 
-  Y. Ding, W. Zhang, L. Yu, K. Lu, The accuracy and efficiency
    of GA and PSO optimization schemes on estimating reaction
    kinetic parameters of biomass pyrolysis, Energy, 176 (2019)
    582–588. 
-  B. Albero, C. Sánchez-Brunete, A.I. García-Valcárcel,
    R.A. Pérez, J.L. Tadeo, Ultrasound-assisted extraction of
    emerging contaminants from environmental samples, TrAC,
    Trends Anal. Chem., 71 (2015) 110–118. 
-  V. Naddeo, M.F.N. Secondes, L. Borea, S.W. Hasan, F. Ballesteros
    Jr., V. Belgiornoa, Removal of contaminants of emerging
    concern from real wastewater by an innovative hybrid
    membrane process – ultrasound, adsorption, and membrane
    ultrafiltration (USAMe®), Ultrason. Sonochem., 68 (2020)
    105237, doi:10.1016/j.ultsonch.2020.105237. 
-  T. Benabdallah El-Hadj, J. Dosta, R. Márquez-Serrano, J. Mata-Alvarez, Effect of ultrasound pretreatment in mesophilic
    and thermophilic anaerobic digestion with emphasis on
    naphthalene and pyrene removal, Water Res., 41 (2007) 87–94. 
-  H. Ilyas, E.D. van Hullebusch, A review on the occurrence,
    fate and removal of steroidal hormones during treatment with
    different types of constructed wetlands, J. Environ. Chem. Eng.,
    8 (2020) 103793, doi:10.1016/j.jece.2020.103793. 
-  V. Belgiorno, L. Rizzo, D. Fatta, C.D. Rocca, G. Lofrano,
    A. Nikolaou, V. Naddeo, S. Meric, Review on endocrine
    disrupting-emerging compounds in urban wastewater:
    occurrence and removal by photocatalysis and ultrasonic
    irradiation for wastewater reuse, Desalination, 215 (2007)
    166–176. 
-  R.P.S. Suri, M. Nayak, U. Devaiah, E. Helmig, Ultrasound
    assisted destruction of estrogen hormones in aqueous
    solution: effect of power density, power intensity and reactor
    configuration, J. Hazard. Mater., 146 (2007) 472–478. 
-  H. Fu, R.P.S. Suri, R.F. Chimchirian, E. Helmig, R. Constable,
    Ultrasound-induced destruction of low levels of estrogen
    hormones in aqueous solutions, Environ. Sci. Technol., 41 (2007)
    5869–5874. 
-  V. Naddeo, S. Meriç, D. Kassinos, V. Belgiorno, M. Guida,
    Fate of pharmaceuticals in contaminated urban wastewater
    effluent under ultrasonic irradiation, Water Res., 43 (2009)
    4019–4027. 
-  C.P. Silva, M. Otero, V. Esteves, Processes for the elimination
    of estrogenic steroid hormones from water: a review, Environ.
    Pollut., 165 (2012) 38–58. 
-  U. Kotowska, J. Kapelewska, J. Sturgulewska, Determination of
    phenols and pharmaceuticals in municipal wastewaters from
    Polish treatment plants by ultrasound-assisted emulsification–microextraction followed by GC–MS, Environ. Sci. Pollut. Res.,
    21 (2014) 660–673. 
-  N. Tran, P. Drogui, S.K. Brar, Sonochemical techniques to
    degrade pharmaceutical organic pollutants, Environ. Chem.
    Lett., 13 (2015) 251–268. 
-  J. Kapelewska, U. Kotowska, K. Wiśniewska, Determination
    of personal care products and hormones in leachate and
    groundwater from Polish MSW landfills by ultrasound-assisted
    emulsification microextraction and GC-MS, Environ. Sci. Pollut.
    Res. Int., 23 (2016) 1642–1652. 
-  M.P. Rayaroth, U.K. Aravind, C.T. Aravindakumar, Degradation
    of pharmaceuticals by ultrasound-based advanced
    oxidation process, Environ. Chem. Lett., 14 (2016) 259–290. 
-  A.A. Roudbari, Production of hydroxyl free radical, the main
    mechanism for removing steroid hormones by ultrasound, Int.
    J. Health Stud., 2 (2016) 1–5. 
-  K.H. Chu, Y.A.J. Al-Hamadani, C.M. Park, G. Lee, M. Jang,
    A. Jang, N. Her, A. Son, Y. Yoon, Ultrasonic treatment of
    endocrine disrupting compounds, pharmaceuticals, and
    personal care products in water: a review, Chem. Eng. J.,
    327 (2017) 629–647. 
-  G. Lee, J. Bae, S. Lee, M. Jang, H. Park, Monthly chlorophyll-a
    prediction using neuro-genetic algorithm for water quality
    management in Lakes, Desal. Water Treat., 57 (2016)
    26783–26791. 
-  K. Anupam, S. Dutta, C. Bhattacharjee, S. Datta, Artificial
    neural network modelling for removal of chromium(VI) from
    wastewater using physisorption onto powdered activated
    carbon, Desal. Water Treat., 57 (2016) 3632–3641. 
-  S. Marina, J. Hazard. Mater., (2018). 
-  J. García-alba, J.F. Bárcena, C. Ugarteburu, A. García, Water
    Res., (2018). 
-  M. Shirani, A. Akbari, M. Hassani, A. Goli, S. Habibollahi,
    P. Akbarian, Homogeneous liquid-liquid microextraction via
    flotation assistance coupled with gas chromatography-mass
    spectrometry for determination of myclobutanil in cucumber,
    tomato, grape, and strawberry using genetic algorithm, Int. J.
    Environ. Anal. Chem., 98 (2018) 271–285. 
-  V.D. Nguyen, H.T.H. Nguyen, V. Vranova, L.T.N. Nguyen,
    Q.M. Bui, T.T. Khieu, Artificial neural network modeling for
    Congo red adsorption on microwave-synthesized akaganeite
    nanoparticles: optimization, kinetics, mechanism, and
    thermodynamics, Environ. Sci. Pollut. Res. Int., 28 (2021)
    9133–9145. 
-  R.M. Adnan, O. Kisi, Transfer learning for neural network
    model in chlorophyll-a dynamics prediction by Wenchong
    Tian, Zhenliang Liao, and Xuan Wang, Environ. Sci. Pollut.
    Res., 27 (2020) 30899–30900. 
-  M.R. Gadekar, M. Mansoor Ahammed, Modelling dye removal
    by adsorption onto water treatment residuals using combined
    response surface methodology-artificial neural network
    approach, J. Environ. Manage., 231 (2019) 241–248. 
-  L. Jin, X. Kuang, H. Huang, Z. Qin, Y. Wang, Study on the
    overfitting of the artificial neural network forecasting model,
    Acta Meteorol. Sin., 19 (2004) 216–225. 
-  E. Rahnama, O. Bazrafshan, G. Asadollahfardi, Application
    of data-driven methods to predict the sodium adsorption rate
    (SAR) in different climates in Iran, Arabian J. Geosci., 13 (2020)
    1160, 
 doi: 10.1007/s12517-020-06146-4.
-  S. Homayoun Aria, A. Gholamreza, N. Heidarzadeh,
    Eutrophication modelling of Amirkabir Reservoir (Iran) using
    an artificial neural network approach, Lakes and Reservoirs:
    Science, Policy and Management for Sustainable Use, 24 (2019)
    48–58. 
-  M. Fan, J. Hu, R. Cao, W. Ruan, X. Wei, A review on experimental
    design for pollutants removal in water treatment with the
    aid of artificial intelligence, Chemosphere, 200 (2018) 330–343. 
-  X. Leng, J. Wang, H. Ji, Q. Wang, H. Li, X. Qian, F. Li, M. Yang,
    Prediction of size-fractionated airborne particle-bound metals
    using MLR, BP-ANN and SVM analyses, Chemosphere,
    180 (2017) 513–522. 
-  M.V. Prabhu, R. Karthikeyan, Comparative studies on modelling
    and optimization of hydrodynamic parameters on inverse
    fluidized bed reactor using ANN-GA and RSM, Alexandria
    Eng. J., 57 (2018) 3019–3032. 
-  M. Rahgoshay, S. Feiznia, M. Arian, S. Ali, A. Hashemi,
    Modeling daily suspended sediment load using improved
    support vector machine model and genetic algorithm, Environ.
    Sci. Pollut. Res., 25 (2018) 35693–35706. 
-  C. Sutherland, A. Marcano, B. Chittoo, Artificial Neural
    Network-Genetic Algorithm Prediction of Heavy Metal
    Removal Using a Novel Plant-Based Biosorbent Banana Floret:
    Kinetic, Equilibrium, Thermodynamics and Desorption Studies,
    M. Eyvaz, E. Yüksel, Eds., Desalination and Water Treatment,
    InTechOpen, 2018. 
-  M. Moradnia, M. Noorisepehr, M. Salari, M. Darvishmotevalli,
    Optimization of 2-chlorophenol removal using ultrasound/
    persulfate: prediction by RSM method, biodegradability
    improvement of petrochemical refinery wastewater, Arabian
    J. Sci. Eng., 47 (2022) 6931–6939. 
-  G. Asadollahfardi, A. Taklify, A. Ghanbari, Application of
    artificial neural network to predict TDS in Talkheh Rud River,
    J. Irrig. Drain. Eng., 138 (2012) 363–370. 
-  M. Bahrami, M. Akbari, S.A. Bagherzadeh, A. Karimipour,
    M. Afrand, M. Goodarzi, Develop 24 dissimilar ANNs by
    suitable architectures and training algorithms via sensitivity
    analysis to better statistical presentation: measure MSEs
    between targets and ANN for Fe–CuO/Eg–Water nanofluid,
    Physica A, 519 (2018) 159–168. 
-  R. Soleimani, N.A. Shoushtari, B. Mirza, A. Salahi, Experimental
    investigation, modeling and optimization of membrane
    separation using artificial neural network and multi-objective
    optimization using genetic algorithm, Chem. Eng. Res. Des.,
  91 (2013) 883–903.